ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of the Spin Density Wave in NaxCoO2

62   0   0.0 ( 0 )
 نشر من قبل Jennifer Wooldridge
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic susceptibility, transport and heat capacity measurements of single crystal NaxCoO2 (x=0.71) are reported. A transition to a spin density wave (SDW) state at Tmag = 22 K is observable in all measurements, except chi(ac) data in which a cusp is observed at 4 K and attributed to a low temperature glassy phase. M(H) loops are hysteretic below 15 K. Both the SDW transition and low temperature hysteresis are only visible along the c-axis. The system also exhibits a substantial (~40%) positive magnetoresistance below this temperature. Calculations of the electronic heat capacity gamma above and below Tmag and the size of the jump in C indicate that the onset of the SDW brings about the opening of gap and the removal of part of the Fermi surface. Reduced in-plane electron-electron scattering counteracts the loss of carriers below the transition and as a result we see a net reduction in resistivity below Tmag. Sodium ordering transitions at higher temperatures are observable as peaks in the heat capacity with a corresponding increase in resistivity.

قيم البحث

اقرأ أيضاً

Complementary $^{77}$Se nuclear magnetic resonance (NMR) and electrical transport have been used to correlate the spin density dynamics with the subphases of the field-induced spin density wave (FISDW) ground state in tmt. We find that the peaks in t he spin-lattice relaxation rate 1/T$_1$ appear within the metal-FISDW phase boundary and/or at first-order subphase transitions. In the quantum limit above 25 T, the NMR data gives an insight into the FISDW electronic structure.
We introduce and study a minimum two-orbital Hubbard model on a triangular lattice, which captures the key features of both the trilayer ABC-stacked graphene-boron nitride heterostructure and twisted transition metal dichalcogenides in a broad parame ter range. Our model comprises first- and second-nearest neighbor hoppings with valley-contrasting flux that accounts for trigonal warping in the band structure. For the strong-coupling regime with one electron per site, we derive a spin-orbital exchange Hamiltonian and find the semiclassical ground state to be a spin-valley density wave. We show that a relatively small second-neighbor exchange interaction is sufficient to stabilize the ordered state against quantum fluctuations. Effects of spin- and valley Zeeman fields as well as thermal fluctuations are also examined.
159 - Yan Wu , Zhenhua Ning , Huibo Cao 2017
Ferromagnetic (FM) and incommensurate spin-density wave (ISDW) states are an unusual set of competing magnetic orders that are seldom observed in the same material without application of a polarizing magnetic field. We report, for the first time, the discovery of an ISDW state that is derived from a FM ground state through a Fermi surface (FS) instability in Fe$_3$Ga$_4$. This was achieved by combining neutron scattering experiments with first principles simulations. Neutron diffraction demonstrates that Fe$_3$Ga$_4$ is in an ISDW state at intermediate temperatures and that there is a conspicuous re-emergence of ferromagnetism above 360 K. First principles calculations show that the ISDW ordering wavevector is in excellent agreement with a prominent nesting condition in the spin-majority FS demonstrating the discovery of a novel instability for FM metals; ISDW formation due to Fermi surface nesting in a spin-polarized Fermi surface.
Elucidating the nature of the magnetic ground state of iron-based superconductors is of paramount importance in unveiling the mechanism behind their high temperature superconductivity. Until recently, it was thought that superconductivity emerges onl y from an orthorhombic antiferromagnetic stripe phase, which can in principle be described in terms of either localized or itinerant spins. However, we recently reported that tetragonal symmetry is restored inside the magnetically ordered state of a hole-doped BaFe2As2. This observation was interpreted as indirect evidence of a new double-Q magnetic structure, but alternative models of orbital order could not be ruled out. Here, we present Mossbauer data that show unambiguously that half of the iron sites in this tetragonal phase are non-magnetic, establishing conclusively the existence of a novel magnetic ground state with a non-uniform magnetization that is inconsistent with localized spins. We show that this state is naturally explained as the interference between two spin-density waves, demonstrating the itinerant character of the magnetism of these materials and the primary role played by magnetic over orbital degrees of freedom.
The presence of incommensurate spiral spin-density waves (SDW) has been proposed to explain the $p$ (hole doping) to $1+p$ jump measured in the Hall number $n_H$ at a doping $p^*$. Here we explore {it collinear} incommensurate SDW as another possible explanation of this phenomenon, distinct from the incommensurate {it spiral} SDW proposal. We examine the effect of different SDW strengths and wavevectors and we find that the $n_Hsim p$ behavior is hardly reproduced at low doping. The calculated $n_H$ and Fermi surfaces give characteristic features that should be observed, thus the lack of these features in experiment suggests that the incommensurate collinear SDW is unlikely to be a good candidate to explain the $n_Hsim p$ observed in the pseudogap regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا