ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Paramagnetic Effects in the Mixed State of LuNi2B2C

269   0   0.0 ( 0 )
 نشر من قبل Tuson Park
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Anomalous paramagnetic effects in dc magnetization were observed in the mixed state of LuNi2B2C, unlike any reported previously. It appears as a kink-like feature for H > 30 kOe and becomes more prominent with increasing field. A specific heat jump at the corresponding temperature suggests that the anomaly is due to a true bulk transition. A magnetic flux transition from a square to an hexagonal lattice is consistent with the anomaly.



قيم البحث

اقرأ أيضاً

We report on a study of thermal Hall conductivity k_xy in the superconducting state of CeCoIn_5. The scaling relation and the density of states of the delocalized quasiparticles, both obtained from k_xy, are consistent with d-wave superconducting sym metry. The onset of superconductivity is accompanied by a steep increase in the thermal Hall angle, pointing to a striking enhancement in the quasiparticle mean free path. This enhancement is drastically suppressed in a very weak magnetic field. These results highlight that CeCoIn_5 is unique among superconductors. A small Fermi energy, a large superconducting gap, a short coherence length, and a long mean free path all indicate that CeCoIn_5 is clearly in the superclean regime (E_F/Delta<<l/xi), in which peculiar vortex state is expected.
We study theoretically the mixed state properties of a strong uniaxially-anisotropic type II superconductor with the Pauli paramagnetic effect, focusing on their behaviors when the magnetic field orientation is tilted from the conduction layer ab pla ne. On the basis of Eilenberger theory, we quantitatively estimate significant contributions of the Pauli paramagnetic effects on a variety of physical observables, including transverse and longitudinal components of the flux line lattice form factors, magnetization curves, Sommerfeld coefficient, field distributions and magnetic torques. We apply these studies to Sr_2_RuO_4_ and quantitatively explain several seemingly curious behaviors, including the H_c2_ suppression for the ab plane direction, the larger anisotropy ratio and intensity found by the spin-flip small angle neutron scattering, and the first order transition observed recently in magneto-caloric, specific heat and magnetization measurements in a coherent and consistent manner. Those lead us to conclude that Sr_2_RuO_4_ is either a spin-singlet or a spin-triplet pairing with the d-vector components in the ab plane.
111 - H. Xiao , T. Hu , T. A. Sayles 2008
Magnetization and torque measurements were performed on CeCoIn$_5$ single crystals to study the mixed-state thermodynamics. These measurements allow the determination of both paramagnetic and vortex responses in the mixed-state magnetization. The par amagnetic magnetization is suppressed in the mixed state with the spin susceptibility increasing with increasing magnetic field. The dependence of spin susceptibility on magnetic field is due to the fact that heavy electrons contribute both to superconductivity and paramagnetism and a large Zeeman effect exists in this system. No anomaly in the vortex response was found within the investigated temperature and field range.
99 - C. Cai , T. T. Han , Z. G. Wang 2020
Nematic phase intertwines closely with high-Tc superconductivity in iron-based superconductors. Its mechanism, which is closely related to the pairing mechanism of superconductivity, still remains controversial. Comprehensive characterization of how the electronic state reconstructs in the nematic phase is thus crucial. However, most experiments focus only on the reconstruction of band dispersions. Another important characteristic of electronic state, the spectral weight, has not been studied in details so far. Here, we studied the spectral weight transfer in the nematic phase of FeSe$_{0.9}$S$_{0.1}$ using angle-resolved photoemission spectroscopy and in-situ detwinning technique. There are two elliptical electron pockets overlapping with each other orthogonally at the Brillouin zone corner. We found that, upon cooling, one electron pocket loses spectral weight and fades away, while the other electron pocket gains spectral weight and becomes pronounced. Our results show that the symmetry breaking of electronic state is manifested by not only the anisotropic band dispersion but also the band-selective modulation of spectral weight. Our observation completes our understanding of the nematic electronic state, and put strong constraints on the theoretical models. It further provide crucial clues to understand the gap anisotropy and orbital-selective pairing in iron-selenide superconductors.
High-quality K(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals have been grown by using KAs flux method. Instead of increasing the superconducting transition temperature $T_{rm c}$ through electron doping, we find that Co impurities rapidly suppress $T_{ rm c}$ down to zero at only $x approx$ 0.04. Such an effective suppression of $T_{rm c}$ by impurities is quite different from that observed in Ba$_{0.5}$K$_{0.5}$Fe$_2$As$_2$ with multiple nodeless superconducting gaps. Thermal conductivity measurements in zero field show that the residual linear term $kappa_0/T$ only change slightly with $3.4%$ Co doping, despite the sharp increase of scattering rate. The implications of these anomalous impurity effects are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا