ﻻ يوجد ملخص باللغة العربية
Nematic phase intertwines closely with high-Tc superconductivity in iron-based superconductors. Its mechanism, which is closely related to the pairing mechanism of superconductivity, still remains controversial. Comprehensive characterization of how the electronic state reconstructs in the nematic phase is thus crucial. However, most experiments focus only on the reconstruction of band dispersions. Another important characteristic of electronic state, the spectral weight, has not been studied in details so far. Here, we studied the spectral weight transfer in the nematic phase of FeSe$_{0.9}$S$_{0.1}$ using angle-resolved photoemission spectroscopy and in-situ detwinning technique. There are two elliptical electron pockets overlapping with each other orthogonally at the Brillouin zone corner. We found that, upon cooling, one electron pocket loses spectral weight and fades away, while the other electron pocket gains spectral weight and becomes pronounced. Our results show that the symmetry breaking of electronic state is manifested by not only the anisotropic band dispersion but also the band-selective modulation of spectral weight. Our observation completes our understanding of the nematic electronic state, and put strong constraints on the theoretical models. It further provide crucial clues to understand the gap anisotropy and orbital-selective pairing in iron-selenide superconductors.
Alkali-doped iron selenide is the latest member of high Tc superconductor family, and its peculiar characters have immediately attracted extensive attention. We prepared high-quality potassium-doped iron selenide (KxFe2-ySe2) thin films by molecular
The role of electron-phonon interactions in iron-based superconductor is currently under debate with conflicting experimental reports on the isotope effect. To address this important issue, we employ the renormalization-group method to investigate th
High-quality K(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals have been grown by using KAs flux method. Instead of increasing the superconducting transition temperature $T_{rm c}$ through electron doping, we find that Co impurities rapidly suppress $T_{
We present the first infrared and optical study in the normal state of ab-plane oriented single crystals of the iron-oxypnictide superconductor LaFePO. We find that this material is a low carrier density metal with a moderate level of correlations an
Using a variational Monte Carlo method, we investigate the nematic state in iron-base superconductors based on a three-band Hubbard model. Our results demonstrate that the nematic state, formed by introducing an anisotropic hopping order into the pro