ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-Spin Interaction In Artificial Molecules With In-Plane Magnetic Field

63   0   0.0 ( 0 )
 نشر من قبل Guido Goldoni
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate theoretically the spin-spin interaction of two-electrons in vertically coupled QDs as a function of the angle between magnetic field and growth axis. Our numerical approach is based on a real-space description of single-particle states in realistic samples and exact diagonalization of carrier-carrier Coulomb interaction. In particular, the effect of the in-plane field component on tunneling and, therefore, spin-spin interaction will be discussed; the singlet-triplet phase diagram as a function of the field strength and direction is drawn.

قيم البحث

اقرأ أيضاً

81 - M. Goryca , X. Zhang , J. Li 2020
Artificial spin ices (ASIs) are interacting arrays of lithographically-defined nanomagnets in which novel frustrated magnetic phases can be intentionally designed. A key emergent description of fundamental excitations in ASIs is that of magnetic mono poles -- mobile quasiparticles that carry an effective magnetic charge. Here we demonstrate that the archetypal square ASI lattice can host, in specific regions of its magnetic phase diagram, high-density plasma-like regimes of mobile magnetic monopoles. By passively listening to spontaneous monopole noise in thermal equilibrium, we reveal their intrinsic dynamics and show that monopole kinetics are minimally correlated (that is, most diffusive) in the plasma phase. These results open the door to on-demand monopole regimes having field-tunable densities and dynamic properties, thereby providing a new paradigm for probing the physics of effective magnetic charges in synthetic matter.
Artificial spin ice systems have seen burgeoning interest due to their intriguing physics and potential applications in reprogrammable memory, logic and magnonics. In-depth comparisons of distinct artificial spin systems are crucial to advancing the field and vital work has been done on characteristic behaviours of artificial spin ices arranged on different geometric lattices. Integration of artificial spin ice with functional magnonics is a relatively recent research direction, with a host of promising early results. As the field progresses, studies examining the effects of lattice geometry on the magnonic response are increasingly significant. While studies have investigated the effects of different lattice tilings such as square and kagome (honeycomb), little comparison exists between systems comprising continuously-connected nanostructures, where spin-waves propagate through the system via exchange interaction, and systems with nanobars disconnected at vertices where spin-waves are transferred via stray dipolar-field. Here, we perform a Brillouin light scattering study of the magnonic response in two kagome artificial spin ices, a continuously-connected system and a disconnected system with vertex gaps. We observe distinctly different high-frequency dynamics and characteristic magnetization reversal regimes between the systems, with key distinctions in system microstate during reversal, internal field profiles and spin-wave mode quantization numbers. These observations are pertinent for the fundamental understanding of artificial spin systems and the design and engineering of such systems for functional magnonic applications.
We investigate the role of topology and distortions in the quantum dynamics of magnetic molecules, using a cyclic spin system as reference. We consider three variants of antiferromagnetic molecular ring, i.e. Cr$_8$, Cr$_7$Zn and Cr$_7$Ni, characteri zed by low lying states with different total spin $S$. We theoretically and experimentally study the low-temperature behavior of the magnetic torque as a function of the applied magnetic field. Near level crossings, this observable selectively probes quantum fluctuations of the total spin ($S$ mixing) induced by lowering of the ideal ring symmetry. We show that while a typical distortion of a model molecular structure is very ineffective in opening new $S$-mixing channels, the spin topology is a major ingredient to control the degree of $S$ mixing. This conclusion is further substantiated by low-temperature heat capacity measurements.
The study of magnetic correlations in dipolar-coupled nanomagnet systems with synchrotron x-ray scattering provides a means to uncover emergent phenomena and exotic phases, in particular in systems with thermally active magnetic moments. From the dif fuse signal of soft x-ray resonant magnetic scattering, we have measured magnetic correlations in a highly dynamic artificial kagome spin ice with sub-70-nm Permalloy nanomagnets. On comparing experimental scattering patterns with Monte Carlo simulations based on a needle-dipole model, we conclude that kagome ice I phase correlations exist in our experimental system even in the presence of moment fluctuations, which is analogous to bulk spin ice and spin liquid behavior. In addition, we describe the emergence of quasi-pinch-points in the magnetic diffuse scattering in the kagome ice I phase. These quasi-pinch-points bear similarities to the fully developed pinch points with singularities of a magnetic Coulomb phase, and continually evolve into the latter on lowering the temperature. The possibility to measure magnetic diffuse scattering with soft x rays opens the way to study magnetic correlations in a variety of nanomagnetic systems.
We explore the impact of a Rashba-type spin-orbit interaction in the conduction band on the spin dynamics of hot excitons in diluted magnetic semiconductor quantum wells. In materials with strong spin-orbit coupling, we identify parameter regimes whe re spin-orbit effects greatly accelerate the spin decay and even change the dynamics qualitatively in the form of damped oscillations. Furthermore, we show that the application of a small external magnetic field can be used to either mitigate the influence of spin-orbit coupling or entirely remove its effects for fields above a material-dependent threshold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا