ﻻ يوجد ملخص باللغة العربية
We explore the impact of a Rashba-type spin-orbit interaction in the conduction band on the spin dynamics of hot excitons in diluted magnetic semiconductor quantum wells. In materials with strong spin-orbit coupling, we identify parameter regimes where spin-orbit effects greatly accelerate the spin decay and even change the dynamics qualitatively in the form of damped oscillations. Furthermore, we show that the application of a small external magnetic field can be used to either mitigate the influence of spin-orbit coupling or entirely remove its effects for fields above a material-dependent threshold.
Phonons are well known to be the main mechanism for the coupling between bright and dark excitons in nonmagnetic semiconductors. Here, we investigate diluted magnetic semiconductors where this process is in direct competition with the scattering at l
The doping of semiconductors with magnetic impurities gives rise not only to a spin-spin interaction between quasi-free carriers and magnetic impurities, but also to a local spin-independent disorder potential for the carriers. Based on a quantum kin
We present a dynamical model that successfully explains the observed time evolution of the magnetization in diluted magnetic semiconductor quantum wells after weak laser excitation. Based on the pseudo-fermion formalism and a second order many-partic
Magnetically doped semiconductors are well known for their giant Zeeman splittings which can reach several meV even in relatively small external magnetic fields. After preparing a nonequilibrium exciton distribution via optical excitation, the spin d
We theoretically investigate the impact of excited states on the dynamics of the exciton ground state in diluted magnetic semiconductor quantum wells. Exploiting the giant Zeeman shift in these materials, an external magnetic field is used to bring t