ﻻ يوجد ملخص باللغة العربية
The transport properties of a simple model for a finite level structure (a molecule or a dot) connected to metal electrodes in an alternating current scanning tunneling microscope (AC-STM) configuration is studied. The finite level structure is assumed to have strong binding properties with the metallic substrate, and the bias between the STM tip and the hybrid metal-molecule interface has both an AC and a DC component. The finite frequency current response and the zero frequency photo-assisted shot noise are computed using the Keldysh technique, and examples for a single site molecule (a quantum dot) and for a two-site molecule are examined. The model may be useful for the interpretation of recent experiments using an AC-STM for the study of both conducting and insulating surfaces, where the third harmonic component of the current is measured. The zero frequency photo-assisted shot noise serves as a useful diagnosis for analyzing the energy level structure of the molecule. The present work motivates the need for further analysis of current fluctuations in electronic molecular transport.
The non-symmetrized current noise is crucial for the analysis of light emission in nanojunctions. The latter represent non-classical photon emitters whose description requires a full quantum approach. It was found experimentally that light emission c
The ac Josephson effect in a ferromagnetic Josephson junction, which is composed of two superconductors separated by a ferromagnetic metal (FM), is studied by a tunneling Hamiltonian and Greens function method. We obtain two types of superconducting
We report the first measurement of the emph{dynamical response} of shot noise (measured at frequency $omega$) of a tunnel junction to an ac excitation at frequency $omega_0$. The experiment is performed in the quantum regime, $hbaromegasimhbaromega_0
We present current noise measurements in a long diffusive superconductor-normal-metal-superconductor junction in the low voltage regime, in which transport can be partially described in terms of coherent multiple Andreev reflections. We show that, wh
Odd frequency (odd-$omega$) electron pair correlations naturally appear at the interface between BCS superconductors and other materials. The detection of odd-$omega$ pairs, which are necessarily non-local in time, is still an open problem. The main