ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of odd-frequency pairing in the Josephson junction current noise

169   0   0.0 ( 0 )
 نشر من قبل Rub\\'en Seoane Souto
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Odd frequency (odd-$omega$) electron pair correlations naturally appear at the interface between BCS superconductors and other materials. The detection of odd-$omega$ pairs, which are necessarily non-local in time, is still an open problem. The main reason is that they do not contribute to static measurements described by time-local correlation functions. Therefore, dynamical measurements, which depend on non-local time correlations, are suitable for detecting these pairs. In this work, we study the signatures of odd-$omega$ pairs in the supercurrent noise through a weak link between two superconductors at different superconducting phases. We show that the finite frequency current noise can be decomposed into three different contributions coming from even frequency (even-$omega$), odd-$omega$ pair amplitudes, and electron-hole correlation functions. Odd-$omega$ pairing, which is inter-lead (between electrons at different sides of the junction), provides a positive contribution to the noise, becoming maximal at a superconducting phase difference of $pi$. In contrast, intra-lead even-$omega$ pair amplitude tends to reduce the noise, except for a region close to $pi$, controlled by the transmission of the junction.

قيم البحث

اقرأ أيضاً

136 - S. Hikino , M. Mori , S. Takahashi 2009
The ac Josephson effect in a ferromagnetic Josephson junction, which is composed of two superconductors separated by a ferromagnetic metal (FM), is studied by a tunneling Hamiltonian and Greens function method. We obtain two types of superconducting phase dependent current, i.e., Josephson current and quasiparticle-pair-interference current (QPIC). These currents change their signs with thickness of the FM layer due to the 0-$pi$ transition characteristic to the ferromagnetic Josephson junction. As a function of applied voltage, the Josephson critical current shows a logarithmic divergence called the Riedel peak at the gap voltage, while the QPIC shows a discontinuous jump. The Riedel peak reverses due to the 0-$pi$ transition and disappears near the 0-$pi$ transition point. The discontinuous jump in the QPIC also represents similar behaviors to the Riedel peak. These results are in contrast to the conventional ones.
We study theoretically the electrical current and low-frequency noise for a linear Josephson junction structure on a topological insulator, in which the superconductor forms a closed ring and currents are injected from normal regions inside and outsi de the ring. We find that this geometry offers a signature for the presence of gapless 1D Majorana fermion modes that are predicted in the channel when the phase difference phi, controlled by the magnetic flux through the ring, is pi. We show that for low temperature the linear conductance jumps when phi passes through pi, accompanied by non-local correlations between the currents from the inside and outside of the ring. We compute the dependence of these features on temperature, voltage and linear dimensions, and discuss the implications for experiments.
We investigate the coherent energy and thermal transport in a temperature-biased long Josephson tunnel junction, when a Josephson vortex, i.e., a soliton, steadily drifts driven by an electric bias current. We demonstrate that thermal transport throu gh the junction can be controlled by the bias current, since it determines the steady-state velocity of the drifting soliton. We study the effects on thermal transport of the damping affecting the soliton dynamics. In fact, a soliton locally influences the power flowing through the junction and can cause the variation of the temperature of the device. When the soliton speed increases approaching its limiting value, i.e., the Swihart velocity, we demonstrate that the soliton-induces thermal effects significantly modify. Finally, we discuss how the appropriate material selection of the superconductors forming the junction is essential, since short quasiparticle relaxation times are required to observe fast thermal effects.
We measured the Josephson radiation emitted by an InSb semiconductor nanowire junction utilizing photon assisted quasiparticle tunneling in an AC-coupled superconducting tunnel junction. We quantify the action of the local microwave environment by ev aluating the frequency dependence of the inelastic Cooper-pair tunneling of the nanowire junction and find the zero frequency impedance $Z(0)=492,Omega$ with a cutoff frequency of $f_0=33.1,$GHz. We extract a circuit coupling efficiency of $etaapprox 0.1$ and a detector quantum efficiency approaching unity in the high frequency limit. In addition to the Josephson radiation, we identify a shot-noise contribution with a Fano factor $Fapprox1$, consistently with the presence of single electron states in the nanowire channel.
We study the critical Josephson current flowing through a double quantum dot weakly coupled to two superconducting leads. We use analytical as well as numerical methods to investigate this setup in the limit of small and large bandwidth leads in all possible charging states, where we account for on-site interactions exactly. Our results provide clear signatures of nonlocal spin-entangled pairs, which support interpretations of recent experiments [Deacon, R. S. et al., Nat. Commun. 6, 7446 (2015)]. In addition, we find that the ground state with one electron on each quantum dot can undergo a tunable singlet-triplet phase transition in the regime where the superconducting gap in the leads is not too large, which gives rise to an additional new signature of nonlocal Cooper pair transport.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا