ﻻ يوجد ملخص باللغة العربية
The absence of resistivity saturation in many strongly correlated metals, including the high-temperature superconductors, is critically examined from the viewpoint of optical conductivity measurements. Coherent quasiparticle conductivity, in the form of a Drude peak centred at zero frequency, is found to disappear as the mean free path (at $omega$ = 0) becomes comparable to the interatomic spacing. This basic loss of coherence at the so-called Mott-Ioffe-Regel (MIR) limit suggests that the universality of the MIR criterion is preserved even in the presence of strong electron correlations. We argue that the shedding of spectral weight at low frequencies, induced by strong correlation effects, is the primary origin of the extended positive slope of the resistivity to high temperatures observed in all so-called bad metals. Moreover, in common with those metals which exhibit resistivity saturation at high temperatures, the scattering rate itself, as extracted from optical spectra, saturates at a value consistent with the MIR limit. We consider possible implications that this ceiling in the scattering rate may have for our understanding of transport within a wide variety of bad metals and suggest a better method for analysing their optical response.
We present high-resolution thermal diffusivity measurements on several near optimally doped electron- and hole-doped cuprate systems in a temperature range that passes through the Mott-Ioffe-Regel limit, above which the quasiparticle picture fails. O
Many metals display resistivity saturation - a substantial decrease in the slope of the resistivity as a function of temperature, that occurs when the electron scattering rate $tau^{-1}$ becomes comparable to the Fermi energy $E_F/hbar$ (the Mott-Iof
We consider diffusion of vibrations in 3d harmonic lattices with strong force-constant disorder. Above some frequency w_IR, corresponding to the Ioffe-Regel crossover, notion of phonons becomes ill defined. They cannot propagate through the system an
Pressure dependence of the conductivity and thermoelectric power is measured through the Mott transition in the layer organic conductor EtMe3P[Pd(dmit)2]2. The critical behavior of the thermoelectric effect provides a clear and objective determinatio
We show that viscoelastic effects play a crucial role in the damping of vibrational modes in harmonic amorphous solids. The relaxation of a given plane wave is described by a memory function of a semi-infinite one-dimensions mass-spring chain. The in