ﻻ يوجد ملخص باللغة العربية
We consider diffusion of vibrations in 3d harmonic lattices with strong force-constant disorder. Above some frequency w_IR, corresponding to the Ioffe-Regel crossover, notion of phonons becomes ill defined. They cannot propagate through the system and transfer energy. Nevertheless most of the vibrations in this range are not localized. We show that they are similar to diffusons introduced by Allen, Feldman et al., Phil. Mag. B 79, 1715 (1999) to describe heat transport in glasses. The crossover frequency w_IR is close to the position of the boson peak. Changing strength of disorder we can vary w_IR from zero value (when rigidity is zero and there are no phonons in the lattice) up to a typical frequency in the system. Above w_IR the energy in the lattice is transferred by means of diffusion of vibrational excitations. We calculated the diffusivity of the modes D(w) using both the direct numerical solution of Newton equations and the formula of Edwards and Thouless. It is nearly a constant above w_IR and goes to zero at the localization threshold. We show that apart from the diffusion of energy, the diffusion of particle displacements in the lattice takes place as well. Above w_IR a displacement structure factor S(q,w) coincides well with a structure factor of random walk on the lattice. As a result the vibrational line width Gamma(q)=D_u q^2 where D_u is a diffusion coefficient of particle displacements. Our findings may have important consequence for the interpretation of experimental data on inelastic x-ray scattering and mechanisms of heat transfer in glasses.
We show that viscoelastic effects play a crucial role in the damping of vibrational modes in harmonic amorphous solids. The relaxation of a given plane wave is described by a memory function of a semi-infinite one-dimensions mass-spring chain. The in
We present a random matrix approach to study general vibrational properties of stable amorphous solids with translational invariance using the correlated Wishart ensemble. Within this approach, both analytical and numerical methods can be applied. Us
We establish a phase diagram of a model in which scalar waves are scattered by resonant point scatterers pinned at random positions in the free three-dimensional (3D) space. A transition to Anderson localization takes place in a narrow frequency band
The vibrational properties of model amorphous materials are studied by combining complete analysis of the vibration modes, dynamical structure factor and energy diffusivity with exact diagonalization of the dynamical matrix and the Kernel Polynomial
The absence of resistivity saturation in many strongly correlated metals, including the high-temperature superconductors, is critically examined from the viewpoint of optical conductivity measurements. Coherent quasiparticle conductivity, in the form