ترغب بنشر مسار تعليمي؟ اضغط هنا

Stoner-Wohlfart model applied to bicrystal magnetoresistance hysteresis

51   0   0.0 ( 0 )
 نشر من قبل Robert Gunnarsson
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate numerically the magnetization direction as function of magnetic field in the Stoner-Wohlfart theory and are able to reproduce the shape of the low-field magnetoresistance hysteresis observed in manganite grain boundary junctions. Moreover, we show that it is necessary to include biaxial magnetocrystalline anisotropy to fully describe the grain boundary magnetoresistance in La$_{0.7}$Sr$_{0.3}$MnO$_3$/SrTiO$_3$ bicrystal tunnel junctions.


قيم البحث

اقرأ أيضاً

56 - G. Bertotti 1999
A general formulation of scalar hysteresis is proposed. This formulation is based on two steps. First, a generating function g(x) is associated with an individual system, and a hysteresis evolution operator is defined by an appropriate envelope const ruction applied to g(x), inspired by the overdamped dynamics of systems evolving in multistable free energy landscapes. Second, the average hysteresis response of an ensemble of such systems is expressed as a functional integral over the space G of all admissible generating functions, under the assumption that an appropriate measure m has been introduced in G. The consequences of the formulation are analyzed in detail in the case where the measure m is generated by a continuous, Markovian stochastic process. The calculation of the hysteresis properties of the ensemble is reduced to the solution of the level-crossing problem for the stochastic process. In particular, it is shown that, when the process is translationally invariant (homogeneous), the ensuing hysteresis properties can be exactly described by the Preisach model of hysteresis, and the associated Preisach distribution is expressed in closed analytic form in terms of the drift and diffusion parameters of the Markovian process. Possible applications of the formulation are suggested, concerning the interpretation of magnetic hysteresis due to domain wall motion in quenched-in disorder, and the interpretation of critical state models of superconducting hysteresis.
163 - Han Zhu , Shuai Dong , J. -M. Liu 2004
The hysteresis of the Ising model in a spatially homogeneous AC field is studied using both mean-field calculations and two-dimensional Monte Carlo simulations. The frequency dispersion and the temperature dependence of the hysteresis loop area are s tudied in relation to the dynamic symmetry loss. The dynamic mechanisms may be different when the hysteresis loops are symmetric or asymmetric, and they can lead to a double-peak frequency dispersion and qualitatively different temperature dependence.
Transport and magnetic properties of LSMO manganite thin films and bicrystal junctions were investigated. Manganite films were epitaxially grown on STO, LAO, NGO and LSAT substrates and their magnetic anisotropy were determined by two techniques of m agnetic resonance spectroscopy. Compare with cubic substrates a small (about 0.3 persentage), the anisotropy of the orthorhombic NGO substrate leads to a uniaxial anisotropy of the magnetic properties of the films in the plane of the substrate. Samples with different tilt of crystallographic basal planes of manganite as well as bicrystal junctions with rotation of the crystallographic axes (RB - junction) and with tilting of basal planes (TB - junction) were investigated. It was found that on vicinal NGO substrates the value of magnetic anisotropy could be varied by changing the substrate inclination angle from 0 to 25 degrees. Measurement of magnetic anisotropy of manganite bicrystal junction demonstrated the presence of two ferromagnetically ordered spin subsystems for both types of bicrystal boundaries RB and TB. The magnitude of the magnetoresistance for TB - junctions increased with decreasing temperature and with the misorientation angle even misorientation of easy axes in the parts of junction does not change. Analysis of the voltage dependencies of bicrystal junction conductivity show that the low value of the magnetoresistance for the LSMO bicrystal junctions can be caused by two scattering mechanisms with the spin- flip of spin - polarized carriers due to the strong electron - electron interactions in a disordered layer at the bicrystal boundary at low temperatures and the spin-flip by anti ferromagnetic magnons at high temperatures.
334 - David Sherrington 2014
It is argued that the main characteristic features of displacive relaxor ferrolectrics of the form ${rm{A(B,B)}rm{O}}_3$ with isovalent ${rm{B,B}}$ can be explained and understood in terms of a soft-pseudospin analogue of conventional spin glasses as extended to itinerant magnet systems. The emphasis is on conceptual comprehension and on stimulating new perspectives with respect to previous and future studies. Some suggestions are made for further studies both on actual real systems and on test model systems to probe further. The case of heterovalent systems is also considered briefly.
We test the predictive power of first-oder reversal curve (FORC) diagrams using simulations of random magnets. In particular, we compute a histogram of the switching fields of the underlying microscopic switching units along the major hysteresis loop , and compare to the corresponding FORC diagram. We find qualitative agreement between the switching-field histogram and the FORC diagram, yet differences are noticeable. We discuss possible sources for these differences and present results for frustrated systems where the discrepancies are more pronounced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا