ﻻ يوجد ملخص باللغة العربية
We test the predictive power of first-oder reversal curve (FORC) diagrams using simulations of random magnets. In particular, we compute a histogram of the switching fields of the underlying microscopic switching units along the major hysteresis loop, and compare to the corresponding FORC diagram. We find qualitative agreement between the switching-field histogram and the FORC diagram, yet differences are noticeable. We discuss possible sources for these differences and present results for frustrated systems where the discrepancies are more pronounced.
Significant progress in many classes of materials could be made with the availability of experimentally-derived large datasets composed of atomic identities and three-dimensional coordinates. Methods for visualizing the local atomic structure, such a
A general formulation of scalar hysteresis is proposed. This formulation is based on two steps. First, a generating function g(x) is associated with an individual system, and a hysteresis evolution operator is defined by an appropriate envelope const
Cumulative growth of successive minor hysteresis loops in Co/Pd multilayers with perpendicular anisotropy was studied in the context of time dependent magnetization reversal dynamics. We show that in disordered ferromagnets, where magnetization rever
In this work, we present a computational scheme for isolating the vibrational spectrum of a defect in a solid. By quantifying the defect character of the atom-projected vibrational spectra, the contributing atoms are identified and the strength of th
For the first time in a bulk proper uniaxial ferroelectrics, double antiferroelectric-like hysteresis loops have been observed in the case of Sn$_2$P$_2$S$_6$ crystal. The quantum anharmonic oscillator model was proposed for description of such polar