ﻻ يوجد ملخص باللغة العربية
We discuss the ground state of a pyrochlore lattice of threefold-orbitally-degenerate $S=1/2$ magnetic ions. We derive an effective spin-orbital Hamiltonian and show that the orbital degrees of freedom can modulate the spin exchange, removing the infinite spin-degeneracy characteristic of pyrochlore structures. The resulting state is a collection of spin-singlet dimers, with a residual degeneracy due to their relative orientation. This latter is lifted by a magneto-elastic interaction, induced in the spin-singlet phase-space, that forces a tetragonal distortion. Such a theory provides an explanation for the helical spin-singlet pattern observed in the B-spinel MgTi$_2$O$_4$.
We discuss the ground state properties of a spin 1/2 magnetic ion with threefold $t_{2g}$ orbital degeneracy on a highly frustrated pyrochlore lattice, like Ti$^{3+}$ ion in B-spinel MgTi$_2$O$_4$. We formulate an effective spin-orbital Hamiltonian a
We study the plaquette valence-bond solid phase of the spin-1/2 J_1-J_2 antiferromagnet Heisenberg model on the square lattice within the bond-operator theory. We start by considering four S = 1/2 spins on a single plaquette and determine the bond op
We report a high-resolution neutron diffraction study on the orbitally-degenerate spin-1/2 hexagonal antiferromagnet AgNiO2. A structural transition to a tripled unit cell with expanded and contracted NiO6 octahedra indicates root(3) x root(3) charge
The trimer resonating valence bond (tRVB) state consisting of an equal-weight superposition of trimer coverings on a square lattice is proposed. A model Hamiltonian of the Rokhsar-Kivelson type for which the tRVB becomes the exact ground state is wri
The local atomic and magnetic structures of the compounds $A$MnO$_2$ ($A$ = Na, Cu), which realize a geometrically frustrated, spatially anisotropic triangular lattice of Mn spins, have been investigated by atomic and magnetic pair distribution funct