ﻻ يوجد ملخص باللغة العربية
We present the fabrication and test results of Hot-Isostatic-Pressed (HIPed) Powder-in-Tube (PIT) MgB$_2$ coils. The coils properties were measured by transport and magnetization at different applied fields ($H$) and temperatures ($T$). The engineering critical current ($J_e$) value is the largest reported in PIT MgB$_2$ wires or tapes. At 25 K our champion 6-layer coil was able to generate a field of 1 T at self-field ($I_c >$ 220 A, $J_e sim 2.8 times 10^4$ A/cm$^2$). At 4 K this coil generated 1.6 T under an applied field of 1.25 T ($I_c sim350$ A, $J_e sim 4.5 times 10^4$ A/cm$^2$). These magnetic fields are high enough for a superconducting transformer or magnet applications such as MRI. A SiC doped MgB$_2$ single layer coil shows a promising improvement at high fields and exhibits $J_c > 10^4$ A/cm$^2$ at 7 T.
The critical current density (Jc) of hot isostatic pressed (HIPed) MgB2 wires, measured by d.c. transport and magnetization, is compared with that of similar wires annealed at ambient pressure. The HIPed wires have a higher Jc than the annealed wires
We investigated the effect of nanoscale-C doping on the critical current density Jc and irreversibility field Birr of Fe-sheathed MgB2 tapes prepared by the in-situ powder-in-tube method. The tapes were heat treated at 600-950C for 1 h. Higher values
We demonstrate that Fe sheathed LaO0.9F0.1FeAs wires with Ti as a buffer layer were successfully fabricated by the powder-in-tube (PIT) method. Comparing to the common two-step vacuum quartz tube synthesis method, the PIT method is more convenient an
We report dc transport and magnetization measurements of Jc in MgB2 wires fabricated by the powder-in-tube method, using commercial MgB2 powder with 5 %at Mg powder added as an additional source of magnesium, and stainless steel as sheath material. B
We demonstrate that Ta sheathed SmO1-xFxFeAs wires were successfully fabricated by the powder-in-tube (PIT) method for the first time. Structural analysis by mean of x-ray diffraction shows that the main phase of SmO1-xFxFeAs was obtained by this syn