ﻻ يوجد ملخص باللغة العربية
The electronic structure of some europium chalcogenides and pnictides is calculated using the {it ab-initio} self-interaction corrected local-spin-density approximation (SIC-LSD). This approach allows both a localised description of the rare earth $f-$electrons and an itinerant description of $s$, $p$ and $d$-electrons. Localising different numbers of $f$-electrons on the rare earth atom corresponds to different nominal valencies, and the total energies can be compared, providing a first-principles description of valency. All the chalcogenides are found to be insulators in the ferromagnetic state and to have a divalent configuration. For the pnictides we find that EuN is half-metallic and the rest are normal metals. However a valence change occurs as we go down the pnictide column of the Periodic Table. EuN and EuP are trivalent, EuAs is only just trivalent and EuSb is found to be divalent. Our results suggest that these materials may find application in spintronic and spin filtering devices.
Deviations of low-energy electronic structure of iron-based superconductors from density functional theory predictions have been parametrized in terms of band- and orbital-dependent mass renormalizations and energy shifts. The former have typically b
In a comprehensive study, we investigate the electronic scattering effects in EuFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ by using Fourier-transform infrared spectroscopy. In spite of the fact that Eu$^{2+}$ local moments order around $T_text{Eu} approx 20$,
While in strongly correlated materials one often focuses on local electronic correlations, the influence of non-local exchange and correlation effects beyond band-theory can be pertinent in systems with more extended orbitals. Thus in many compounds
Undoped iron superconductors accommodate $n=6$ electrons in five d-orbitals. Experimental and theoretical evidence shows that the strength of correlations increases with hole-doping, as the electronic filling approaches half-filling with $n=5$ electr
In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electrons kinetic energy leading to remarkable experimental man