ﻻ يوجد ملخص باللغة العربية
While in strongly correlated materials one often focuses on local electronic correlations, the influence of non-local exchange and correlation effects beyond band-theory can be pertinent in systems with more extended orbitals. Thus in many compounds an adequate theoretical description requires the joint treatment of local and non-local self-energies. Here, I will argue that this is the case for the iron pnictide and chalcogenide superconductors. As an approach to tackle their electronic structure, I will detail the implementation of the recently proposed scheme that combines the quasi-particle self-consistent GW approach with dynamical mean-field theory: QSGW+DMFT. I will showcase the possibilities of QSGW+DMFT with an application on BaFe2As2. Further, I will discuss the empirical finding that in pnictides dynamical and non-local correlation effects separate within the quasi-particle band-width.
By applying density functional theory, we find strong evidence for an itinerant nature of magnetism in two families of iron pnictides. Furthermore, by employing dynamical mean field theory with continuous time quantum Monte Carlo as an impurity solve
Many of the iron pnictides have strongly anisotropic normal-state characteristics, important for the exotic magnetic and superconducting behavior these materials exhibit. Yet, the origin of the observed anisotropy is unclear. Electronically driven ne
The LDA+DMFT method is a very powerful tool for gaining insight into the physics of strongly correlated materials. It combines traditional ab-initio density-functional techniques with the dynamical mean-field theory. The core aspects of the method ar
In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electrons kinetic energy leading to remarkable experimental man
FeSe${}_{0.45}$Te${}_{0.55}$ (FeSeTe) has recently emerged as a promising candidate to host topological superconductivity, with a Dirac surface state and signatures of Majorana bound states in vortex cores. However, correlations strongly renormalize