ترغب بنشر مسار تعليمي؟ اضغط هنا

Specific heat of Nb_3Sn: The case for a second energy gap

100   0   0.0 ( 0 )
 نشر من قبل Alain Junod
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. Guritanu




اسأل ChatGPT حول البحث

We present new specific heat data for Nb3Sn, a well-known technically applied superconductor with a critical temperature T_c ~ 18 K, in the temperature range from 1.2 to 200 K in zero magnetic field, and from 1.5 to 22 K in fields H <= 16 T. The particularly dense and homogeneous polycrystalline sample used for this study is characterized in detail. We determine the bulk upper critical field H_c2(T) from specific heat data, and the Sommerfeld constant Gamma from the entropy S(T). We investigate in detail a low-temperature anomaly already noticed in previous investigations in zero field, and find that this feature can be quantitatively ascribed to the presence of a second superconducting gap 2 Delta_S(0) ~ 0.8 k_B T_c, in addition to the main one 2 Delta_L(0) ~ 4.9 k_B T_c. The signature of this minor gap, which affects 7.5% of the electronic density-of-states, vanishes in fields above ~ 7 T.



قيم البحث

اقرأ أيضاً

We show that the specific heat of the superconductor MgB_2 (MgB2) in zero field, for which significant non-BCS features have been reported, can be fitted, essentially within experimental error, over the entire range of temperature to T_c by a phenome nological two-gap model. The resulting gap parameters agree with previous determinations from band-structure calculations, and from various spectroscopic experiments. The determination from specific heat, a bulk property, shows that the presence of two superconducting gaps in MgB_2 is a volume effect.
Resistivity and specific heat have been measured on a single crystalline sample of the beta-pyrochlore oxide superconductor, KOs2O6. It is found that a second peak in specific heat, which may evidence an unknown phase transition, appears around Tp ~ 7.5 K below the superconducting transition temperature Tc = 9.53 K. Applying magnetic fields up to 14 T, Tc is reduced gradually down to 7.1 K, while Tp is raised a little and becomes even higher than Tc at 14 T, which implies that the second anomaly is not associated directly with the superconductivity. It is demonstrated, however, that there is significant communication between the two anomalies, suggesting that they come from the same electrons. It is also reported that the Sommerfeld coefficient ? in KOs2O6 is possibly much larger than in other members of beta-pyrochlore oxide superconductors, RbOs2O6 (Tc = 6.3 K) and CsOs2O6 (Tc = 3.3 K).
The heat capacity of a 2H-NbS2 single crystal has been measured by a highly sensitive ac technique down to 0.6 K and in magnetic fields up to 14 T. At very low temperatures data show excitations over an energy gap (2DS/kBTc approx 2.1) much smaller t han the BCS value. The overall temperature dependence of the electronic specific heat Ce can be explained either by the existence of a strongly anisotropic single-energy gap or within a two-gap scenario with the large gap about twice bigger than the small one. The field dependence of the Sommerfeld coefficient shows a strong curvature for both principal-field orientations, parallel and perpendicular to the c axis of the crystal, resulting in a magnetic field dependence of the superconducting anisotropy. These features are discussed in comparison to the case of MgB2 and to the data obtained by scanning-tunneling spectroscopy. We conclude that the two-gap scenario better describes the gap structure of NbS2 than the anisotropic s-wave model.
The gap structure of Sr$_2$RuO$_4$, which is a longstanding candidate for a chiral p-wave superconductor, has been investigated from the perspective of the dependence of its specific heat on magnetic field angles at temperatures as low as 0.06 K ($si m 0.04T_{rm c}$). Except near $H_{rm c2}$, its fourfold specific-heat oscillation under an in-plane rotating magnetic field is unlikely to change its sign down to the lowest temperature of 0.06 K. This feature is qualitatively different from nodal quasiparticle excitations of a quasi-two-dimensional superconductor possessing vertical lines of gap minima. The overall specific-heat behavior of Sr$_2$RuO$_4$ can be explained by Doppler-shifted quasiparticles around horizontal line nodes on the Fermi surface, whose in-plane Fermi velocity is highly anisotropic, along with the occurrence of the Pauli-paramagnetic effect. These findings, in particular, the presence of horizontal line nodes in the gap, call for a reconsideration of the order parameter of Sr$_2$RuO$_4$.
We investigated the superconducting order parameter of the filled skutterudite LaPt4Ge12, with a transition temperature of Tc = 8.3 K. To this end, we performed temperature and magnetic-field dependent specific-heat and thermal-conductivity measureme nts. All data are compatible with a single superconducting s-wave gap. However, a multiband scenario cannot be ruled out. The results are discussed in the context of previous studies on the substitution series Pr1-xLaxPt4Ge12. They suggest compatible order parameters for the two end compounds LaPt4Ge12 and PrPt4Ge12. This is not consistent with a single s-wave gap in LaPt4Ge12 considering previous reports of unconventional and/or multiband superconductivity in PrPt4Ge12.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا