ترغب بنشر مسار تعليمي؟ اضغط هنا

Zooming-in on the charge ordering in YBa2Cu3O6.5

384   0   0.0 ( 0 )
 نشر من قبل Donglai Feng
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report direct evidence of charge/orbital ordering of low energy electronic states of $Cu$ in YBa$_2$Cu$_3$O$_{6+x}$ ortho-II phase in both the $CuO_3$ chain and the CuO$_2$ plane. Huge enhancement of the $({1/2},0,0)$ superstructure Bragg peak is observed when photon energy is tuned to the $Cu L_{2,3}$ absorption edge with large polarization dependence. The ordering in the $CuO_2$ plane discovered here sheds new light on how the one dimensional $Cu-O$ chains affect the $CuO_2$ plane, and why many normal and superconducting state properties of this system exhibit strong anisotropy.

قيم البحث

اقرأ أيضاً

Recent studies of the high-Tc superconductor La_(1.6-x)Nd_(0.4)Sr_(x)CuO_(4) (Nd-LSCO) have found a linear-T in-plane resistivity rho_(ab) and a logarithmic temperature dependence of the thermopower S / T at a hole doping p = 0.24, and a Fermi-surfac e reconstruction just below p = 0.24 [1, 2]. These are typical signatures of a quantum critical point (QCP). Here we report data on the c-axis resistivity rho_(c)(T) of Nd-LSCO measured as a function of temperature near this QCP, in a magnetic field large enough to entirely suppress superconductivity. Like rho_(ab), rho_(c) shows an upturn at low temperature, a signature of Fermi surface reconstruction caused by stripe order. Tracking the height of the upturn as it decreases with doping enables us to pin down the precise location of the QCP where stripe order ends, at p* = 0.235 +- 0.005. We propose that the temperature T_(rho) below which the upturn begins marks the onset of the pseudogap phase, found to be roughly twice as high as the stripe ordering temperature in this material.
In cuprate high-temperature superconductors, an antiferromagnetic Mott insulating state can be destabilized toward unconventional superconductivity by either hole- or electron-doping. In addition to these two electronic phases there is now a copious amount of evidence that supports the presence of a charge ordering (CO) instability competing with superconductivity inside the pseudogap state of the hole-doped (p-type) cuprates, but so far there has been no evidence of a similar CO in their electron-doped (n-type) counterparts. Here we report resonant x-ray scattering (RXS) measurements which demonstrate the presence of charge ordering in the n-type cuprate Nd2-xCexCuO4 near optimal doping. Remarkably we find that the CO in Nd2-xCexCuO4 occurs with similar periodicity, and along the same direction, as the CO in p-type cuprates. However, in contrast to the latter, the CO onset in Nd2-xCexCuO4 is higher than the pseudogap temperature, and is actually in the same temperature range where antiferromagnetic fluctuations are first detected -- thereby showing that CO and antiferromagnetic fluctuations are likely coupled in n-type cuprates. Overall our discovery uncovers a missing piece of the cuprate phase diagram and opens a parallel path to the study of CO and its relationship to other phenomena, such as antiferromagnetism (AF) and high-temperature superconductivity.
Besides superconductivity, copper-oxide high temperature superconductors are susceptible to other types of ordering. We use scanning tunneling microscopy and resonant elastic x-ray scattering measurements to establish the formation of charge ordering in the high-temperature superconductor Bi2Sr2CaCu2O8+x. Depending on the hole concentration, the charge ordering in this system occurs with the same period as those found in Y-based or La-based cuprates, and displays the analogous competition with superconductivity. These results indicate the similarity of charge organization competing with superconductivity across different families of cuprates. We observe this charge ordering to leave a distinct electron-hole asymmetric signature (and a broad resonance centered at +20 meV) in spectroscopic measurements, thereby indicating that it is likely related to the organization of holes in a doped Mott insulator.
54 - C. Stock 2002
We present elastic and inelastic neutron scattering results on highly oxygen ordered YBa2Cu3O6.5 ortho-II. We find no evidence for the presence of ordered magnetic moments to a sensitivity of 0.003 Bohr magnetons, an order of magnitude smaller than h as been suggested in theories of orbital or d-density-wave (DDW) currents. The absence of sharp elastic peaks, shows that the d-density-wave phase is not present, at least for the superconductor with the doping of 6.5 and the ordered ortho-II structure. We cannot exclude the possibility that a broad peak may exist with extremely short-range DDW correlations. For less ordered or more doped crystals it is possible that disorder may lead to static magnetism. We have also searched for the large normal state spin gap that is predicted to exist in an ordered DDW phase. Instead of a gap we find that the Q-correlated spin susceptibility persists to the lowest energies studied, 6 meV. Our results are compatible with the coexistence of superconductivity with orbital currents, but only if they are dynamic, and exclude a sharp phase transition to an ordered d-density-wave phase.
We show that the distribution of quantum oscillation frequencies observed over a broad range of magnetic field can be reconciled with the wavevectors of charge modulations found in nuclear magnetic resonance and resonant x-ray spectroscopy experiment s in underdoped YBa2Cu3O6+x within a model of biaxial charge ordering occurring in a bilayer CuO2 planar system. Bilayer coupling introduces the possibility of different period modulations and quantum oscillation frequencies corresponding to each of the bonding and antibonding bands, which can be reconciled with recent experimental observations
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا