ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi surface reconstruction from bilayer charge ordering in the underdoped high temperature superconductor YBa2Cu3O6+x

149   0   0.0 ( 0 )
 نشر من قبل Neil Harrison
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the distribution of quantum oscillation frequencies observed over a broad range of magnetic field can be reconciled with the wavevectors of charge modulations found in nuclear magnetic resonance and resonant x-ray spectroscopy experiments in underdoped YBa2Cu3O6+x within a model of biaxial charge ordering occurring in a bilayer CuO2 planar system. Bilayer coupling introduces the possibility of different period modulations and quantum oscillation frequencies corresponding to each of the bonding and antibonding bands, which can be reconciled with recent experimental observations

قيم البحث

اقرأ أيضاً

We report quantum oscillations in underdoped YBa2Cu3O6.56 over a significantly large range in magnetic field extending from 24 to 101 T, enabling three well-spaced low frequencies at 440 T, 532 T, and 620 T to be clearly resolved. We show that a smal l nodal bilayer coupling that splits a nodal pocket into bonding and antibonding orbits yields a sequence of frequencies, F0 - {Delta}F, F0, and F0 + {Delta}F and accompanying beat pattern similar to that observed experimentally, on invoking magnetic breakdown tunneling at the nodes. The relative amplitudes of the multiple frequencies observed experimentally in quantum oscillation measurements are shown to be reproduced using a value of nodal bilayer gap quantitatively consistent with that measured in photoemission experiments in the underdoped regime.
The mystery of the normal state in the underdoped cuprates has deepened with the use of newer and complementary experimental probes. While photoemission studies have revealed solely `Fermi arcs centered on nodal points in the Brillouin zone at which holes aggregate upon doping, more recent quantum oscillation experiments have been interpreted in terms of an ambipolar Fermi surface, that includes sections containing electron carriers located at the antinodal region. To address the question of whether an ambipolar Fermi surface truly exists, here we utilize measurements of the second harmonic quantum oscillations, which reveal that the amplitude of these oscillations arises mainly from oscillations in the chemical potential, providing crucial information on the nature of the Fermi surface in underdoped YBa2Cu3O6+x. In particular, the detailed relationship between the second harmonic amplitude and the fundamental amplitude of the quantum oscillations leads us to the conclusion that there exists only a single underlying quasi-two dimensional Fermi surface pocket giving rise to the multiple frequency components observed via the effects of warping, bilayer splitting and magnetic breakdown. A range of studies suggest that the pocket is most likely associated with states near the nodal region of the Brillouin zone of underdoped YBa2Cu3O6+x at high magnetic fields.
The Ferrell-Glover-Tinkham (FGT) sum rule has been applied to the temperature dependence of the in-plane optical conductivity of optimally-doped YBa_2Cu_3O_{6.95} and underdoped YBa_2Cu_3O_{6.60}. Within the accuracy of the experiment, the sum rule i s obeyed in both materials. However, the energy scale omega_c required to recover the full strength of the superfluid rho_s in the two materials is dramatically different; omega_c simeq 800 cm^{-1} in the optimally doped system (close to twice the maximum of the superconducting gap, 2Delta_0), but omega_c gtrsim 5000 cm^{-1} in the underdoped system. In both materials, the normal-state scattering rate close to the critical temperature is small, Gamma < 2Delta_0, so that the materials are not in the dirty limit and the relevant energy scale for rho_s in a BCS material should be twice the energy gap. The FGT sum rule in the optimally-doped material suggests that the majority of the spectral weight of the condensate comes from energies below 2Delta_0, which is consistent with a BCS material in which the condensate originates from a Fermi liquid normal state. In the underdoped material the larger energy scale may be a result of the non-Fermi liquid nature of the normal state. The dramatically different energy scales suggest that the nature of the normal state creates specific conditions for observing the different aspects of what is presumably a central mechanism for superconductivity in these materials.
128 - C. C. Tam , M. Zhu , J. Ayres 2021
Hall effect and quantum oscillation measurements on high temperature cuprate superconductors show that underdoped compositions have a small Fermi surface pocket whereas when heavily overdoped, the pocket increases dramatically in size. The origin of this change in electronic structure has been unclear, but may be related to the high temperature superconductivity. Here we show that the clean overdoped single-layer cuprate Tl2Ba2CuO6+x (Tl2201) displays CDW order with a remarkably long correlation length $xi approx 200$ r{A} which disappears above a hole concentration p_CDW ~ 0.265. We show that the evolution of the electronic properties of Tl2201 as the doping is lowered may be explained by a Fermi surface reconstruction which accompanies the emergence of the CDW below p_CDW. Our results demonstrate importance of CDW correlations in understanding the electronic properties of overdoped cuprates.
High magnetic fields have revealed a surprisingly small Fermi-surface in underdoped cuprates, possibly resulting from Fermi-surface reconstruction due to an order parameter that breaks translational symmetry of the crystal lattice. A crucial issue co ncerns the doping extent of this state and its relationship to the principal pseudogap and superconducting phases. We employ pulsed magnetic field measurements on the cuprate HgBa$_2$CuO$_{4+delta}$ to identify signatures of Fermi surface reconstruction from a sign change of the Hall effect and a peak in the temperature-dependent planar resistivity. We trace the termination of Fermi-surface reconstruction to two hole concentrations where the superconducting upper critical fields are found to be enhanced. One of these points is associated with the pseudogap end-point near optimal doping. These results connect the Fermi-surface reconstruction to both superconductivity and the pseudogap phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا