ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of the Hall Coefficient and the Peculiar Electronic Structure of the Cuprate Superconductors

77   0   0.0 ( 0 )
 نشر من قبل Yoichi Ando
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Although the Hall coefficient R_H is an informative transport property of metals and semiconductors, its meaning in the cuprate superconductors has been ambiguous because of its unusual characteristics. Here we show that a systematic study of R_H in La_{2-x}Sr_{x}CuO_{4} single crystals over a wide doping range establishes a qualitative understanding of its peculiar evolution, which turns out to reflect a two-component nature of the electronic structure caused by an unusual development of the Fermi surface recently uncovered by photoemission experiments.



قيم البحث

اقرأ أيضاً

In this paper, we review the low energy electronic structure of the kinetic energy driven d-wave cuprate superconductors. We give a general description of the charge-spin separation fermion-spin theory, where the constrained electron is decoupled as the gauge invariant dressed holon and spin. In particular, we show that under the decoupling scheme, the charge-spin separation fermion-spin representation is a natural representation of the constrained electron defined in a restricted Hilbert space without double electron occupancy. Based on the charge-spin separation fermion-spin theory, we have developed the kinetic energy driven superconducting mechanism, where the superconducting state is controlled by both superconducting gap parameter and quasiparticle coherence. Within this kinetic energy driven superconductivity, we have discussed the low energy electronic structure of the single layer and bilayer cuprate superconductors in both superconducting and normal states, and qualitatively reproduced all main features of the angle-resolved photoemission spectroscopy measurements on the single layer and bilayer cuprate superconductors. We show that the superconducting state in cuprate superconductors is the conventional Bardeen-Cooper-Schrieffer like with the d-wave symmetry, so that the basic Bardeen-Cooper-Schrieffer formalism with the d-wave gap function is still valid in discussions of the low energy electronic structure of cuprate superconductors, although the pairing mechanism is driven by the kinetic energy by exchanging spin excitations. We also show that the well pronounced peak-dip-hump structure of the bilayer cuprate superconductors in the superconducting state and double-peak structure in the normal state are mainly caused by the bilayer splitting.
One of the key motivations for the development of atomically resolved spectroscopic imaging STM (SI-STM) has been to probe the electronic structure of cuprate high temperature superconductors. In both the d-wave superconducting (dSC) and the pseudoga p (PG) phases of underdoped cuprates, two distinct classes of electronic states are observed using SI-STM. The first class consists of the dispersive Bogoliubov quasiparticles of a homogeneous d-wave superconductor. These are detected below a lower energy scale |E|={Delta}0 and only upon a momentum space (k-space) arc which terminates near the lines connecting k=pm({pi}/a0,0) to k=pm(0, {pi}/a0). In both the dSC and PG phases, the only broken symmetries detected in the |E|leq {Delta}0 states are those of a d-wave superconductor. The second class of states occurs at energies near the pseudogap energy scale |E| {Delta}1 which is associated conventionally with the antinodal states near k=pm({pi}/a0,0) and k=pm(0, {pi}/a0). We find that these states break the 90o-rotational (C4) symmetry of electronic structure within CuO2 unit cells, at least down to 180o rotational (C2) symmetry (nematic) but in a spatially disordered fashion. This intra-unit-cell C4 symmetry breaking coexists at |E| {Delta}1 with incommensurate conductance modulations locally breaking both rotational and translational symmetries (smectic). The properties of these two classes of |E| {Delta}1 states are indistinguishable in the dSC and PG phases. To explain this segregation of k-space into the two regimes distinguished by the symmetries of their electronic states and their energy scales |E| {Delta}1 and |E|leq{Delta}0, and to understand how this impacts the electronic phase diagram and the mechanism of high-Tc superconductivity, represents one of a key challenges for cuprate studies.
Taking the spin-fermion model as the starting point for describing the cuprate superconductors, we obtain an effective nonlinear sigma-field hamiltonian, which takes into account the effect of doping in the system. We obtain an expression for the spi n-wave velocity as a function of the chemical potential. For appropriate values of the parameters we determine the antiferromagnetic phase diagram for the YBa$_2$Cu$_3$O$_{6+x}$ compound as a function of the dopant concentration in good agreement with the experimental data. Furthermore, our approach provides a unified description for the phase diagrams of the hole-doped and the electron doped compounds, which is consistent with the remarkable similarity between the phase diagrams of these compounds, since we have obtained the suppression of the antiferromagnetic phase as the modulus of the chemical potential increases. The aforementioned result then follows by considering positive values of the chemical potential related to the addition of holes to the system, while negative values correspond to the addition of electrons.
We present ARPES data taken from the structurally simplest representative of iron-based superconductors, FeSe, in a wide temperature range. Apart from the variations related to the nematic transition, we detect very pronounced shifts of the dispersio ns on the scale of hundreds of kelvins. Remarkably, upon warming the sample up, the band structure has a tendency to relax to the one predicted by conventional band structure calculations, right opposite to what is intuitively expected. Our findings shed light on the origin of the dominant interaction shaping the electronic states responsible for high-temperature superconductivity in iron-based materials.
116 - K. Tanaka , F. Marsiglio 1999
Motivated by recent experiments on Al nanoparticles, we have studied the effects of fixed electron number and small size in nanoscale superconductors, by applying the canonical BCS theory for the attractive Hubbard model in two and three dimensions. A negative ``gap in particles with an odd number of electrons as observed in the experiments is obtained in our canonical scheme. For particles with an even number of electrons, the energy gap exhibits shell structure as a function of electron density or system size in the weak-coupling regime: the gap is particularly large for ``magic numbers of electrons for a given system size or of atoms for a fixed electron density. The grand canonical BCS method essentially misses this feature. Possible experimental methods for observing such shell effects are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا