ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge dynamics of doped holes in high Tc cuprates - A clue from optical conductivity

68   0   0.0 ( 0 )
 نشر من قبل Andrey Mishchenko
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The charge dynamics in weakly hole doped high temperature superconductors is studied in terms of the accurate numerical solution to a model of a single hole interacting with a quantum lattice in an antiferromagnetic background, and accurate far-infrared ellipsometry measurements. The experimentally observed two electronic bands in the infrared spectrum can be identified in terms of the interplay between the electron correlation and electron-phonon interaction resolving the long standing mystery of the mid-infrared band.

قيم البحث

اقرأ أيضاً

109 - Ling Qin , Jihong Qin , 2013
Within the microscopic theory of the normal-state pseudogap state, the doping and temperature dependence of the charge dynamics in doped cuprates is studied in the whole doping range from the underdoped to heavily overdoped. The conductivity spectrum in the underdoped and optimally doped regimes contains the low-energy non-Drude peak and unusual midinfrared band. However, the position of the midinfrared band shifts towards to the low-energy non-Drude peak with increasing doping. In particular, the low-energy non-Drude peak incorporates with the midinfrared band in the heavily overdoped regime, and then the low-energy Drude behavior recovers. It is shown that the striking behavior of the low-energy non-Drude peak and unusual midinfrared band in the underdoped and optimally doped regimes is closely related to the emergence of the doping and temperature dependence of the normal-state pseudogap.
80 - T. Goto , J. Tonishi , T. Suzuki 2008
To date, there has been no evidence for the macroscopic structural phase transition to the low temperature tetragonal structure (LTT) with a space group P42/ncm in high-TC cuprate of rare earth-free La2-xSrxCuO4 (LSCO). By investigating Cu-NMR on sin gle crystals, we have found that spatially incoherent LTT structure emerges below 50 K in the sample with x=0.12. This incoherent structure is considered to play a key role for the slight depression of the superconductivity around x=1/8.
A major challenge in understanding the cuprate superconductors is to clarify the nature of the fundamental electronic correlations that lead to the pseudogap phenomenon. Here we use ultrashort light pulses to prepare a non-thermal distribution of exc itations and capture novel properties that are hidden at equilibrium. Using a broadband (0.5-2 eV) probe we are able to track the dynamics of the dielectric function, unveiling an anomalous decrease of the scattering rate of the charge carriers in a pseudogap-like region of the temperature ($T$) and hole-doping ($p$) phase diagram. In this region, delimited by a well-defined $T^*_{neq}(p)$ line, the photo-excitation process triggers the evolution of antinodal excitations from gapped (localized) to delocalized quasi-particles characterized by a longer lifetime. The novel concept of photo-enhanced antinodal conductivity is naturally explained within the single-band Hubbard model, in which the short-range Coulomb repulsion leads to a k-space differentiation between nodal quasiparticles and antinodal excitations.
115 - Z.Y. Weng , D.N. Sheng , 2000
We present a self-consistent RVB theory which unifies the metallic (superconducting) phase with the half-filling antiferromagnetic (AF) phase. Two crucial factors in this theory include the RVB condensation which controls short-range AF spin correlat ions and the phase string effect introduced by hole hopping as a key doping effect. We discuss both the uniform and non-uniform mean-field solutions and show the unique features of the characteristic spin energy scale, superconducting transition temperature, and the phase diagram, which are all consistent with the experimental measurements of high-$T_c$ cuprates.
Unrevealing local magnetic and electronic correlations in the vicinity of charge carriers is crucial in order to understand rich physical properties in correlated electron systems. Here, using high-energy optical conductivity (up to 35 eV) as a funct ion of temperature and polarization, we observe a surprisingly strong spin polarization of the local spin singlet with enhanced ferromagnetic correlations between Cu spins near the doped holes in lightly hole-doped La$_{1.95}$Sr$_{0.05}$Cu$_{0.95}$Zn$_{0.05}$O$_{4}$. The changes of the local spin polarization manifest strongly in the temperature-dependent optical conductivity at ~7.2 eV, with an anomaly at the magnetic stripe phase (~25 K), accompanied by anomalous spectral-weight transfer in a broad energy range. Supported by theoretical calculations, we also assign high-energy optical transitions and their corresponding temperature dependence, particularly at ~2.5 ~8.7, ~9.7, ~11.3 and ~21.8 eV. Our result shows the importance of a strong mixture of spin singlet and triplet states in hole-doped cuprates and demonstrates a new strategy to probe local magnetic correlations using high- energy optical conductivity in correlated electron systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا