ترغب بنشر مسار تعليمي؟ اضغط هنا

The Fano resonance for Anderson impurity systems

304   0   0.0 ( 0 )
 نشر من قبل Hong-Gang Luo
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a general theory for the Fano resonance in Anderson impurity systems. It is shown that the broadening of the impurity level leads to an additional and important contribution to the Fano resonance around the Fermi surface, especially in the mixed valence regime. This contribution results from the interference between the Kondo resonance and the broadened impurity level. Being applied to the scanning tunnelling microscopic experiments, we find that our theory gives a consistent and quantitative account for the Fano resonance lineshapes for both Co and Ti impurities on Au or Ag surfaces. The Ti systems are found to be in the mixed valence regime.

قيم البحث

اقرأ أيضاً

96 - H. G. Luo , T. Xiang , X. Q. Wang 2005
In a recent Comment, Kolf et al. (cond-mat/0503669) state that our analysis of the Fano resonance for Anderson impurity systems [Luo et al., Phys. Rev. Lett 92, 256602 (2004)] is incorrect. Here we want to point out that their comments are not based on firm physical results and their criticisms are unjustified and invalid.
The Kondo resonance at the Fermi level is well-established for the electronic structure of Ce (f1 electron) and Yb (f1 hole) based systems. In this work, we report complementary experimental and theoretical studies on the Kondo resonance in Pr-based f2 system, PrTi2Al20. Using Pr 3d-4f resonant photoemission spectroscopy and single impurity Anderson model (SIAM) calculations including the full multiplets of Pr ions, we show that an f2 system can also give rise to a Kondo resonance at the Fermi level. The Kondo resonance peak is experimentally observed through a final-state-multiplet dependent resonance and is reproduced with properly tuned hybridization strength in SIAM calculations.
An Anderson impurity in a Hubbard model on chains with finite length is studied using the density-matrix renormalization group (DMRG) technique. In the first place, we analyzed how the reduction of electron density from half-filling to quarter-fillin g affects the Kondo resonance in the limit of Hubbard repulsion U=0. In general, a weak dependence with the electron density was found for the local density of states (LDOS) at the impurity except when the impurity, at half-filling, is close to a mixed valence regime. Next, in the central part of this paper, we studied the effects of finite Hubbard interaction on the chain at quarter-filling. Our main result is that this interaction drives the impurity into a more defined Kondo regime although accompanied in most cases by a reduction of the spectral weight of the impurity LDOS. Again, for the impurity in the mixed valence regime, we observed an interesting nonmonotonic behavior. We also concluded that the conductance, computed for a small finite bias applied to the leads, follows the behavior of the impurity LDOS, as in the case of non-interacting chains. Finally, we analyzed how the Hubbard interaction and the finite chain length affect the spin compensation cloud both at zero and at finite temperature, in this case using quantum Monte Carlo techniques.
We investigate static and dynamical ground-state properties of the two-impurity Anderson model at half filling in the limit of vanishing impurity separation using the dynamical density-matrix renormalization group method. In the weak-coupling regime, we find a quantum phase transition as function of inter-impurity hopping driven by the charge degrees of freedom. For large values of the local Coulomb repulsion, the transition is driven instead by a competition between local and non-local magnetic correlations. We find evidence that, in contrast to the usual phenomenological picture, it seems to be the bare effective exchange interactions which trigger the observed transition.
We have developed a new efficient and accurate impurity solver for the single impurity Anderson model (SIAM), which is based on a non-perturbative recursion technique in a space of operators and involves expanding the self-energy as a continued fract ion. The method has no special occupation number or temperature restrictions; the only approximation is the number of levels of the continued fraction retained in the expansion. We also show how this approach can be used as a new approach to Dynamical Mean Field Theory (DMTF) and illustrate this with the Hubbard model. The three lowest orders of recursion give the Hartree-Fock, Hubbard I, and Hubbard III approximations. A higher level of recursion is able to reproduce the expected 3-peak structure in the spectral function and Fermi liquid behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا