ﻻ يوجد ملخص باللغة العربية
We examine the phase and the period of the radiation-induced oscillatory-magnetoresistance in GaAs/AlGaAs devices utilizing in-situ magnetic field calibration by Electron Spin Resonance of DiPhenyl-Picryl-Hydrazal. The results confirm a $f$-independent 1/4 cycle phase shift with respect to the $hf = jhbaromega_{c}$ condition for $j geq 1$, and they also suggest a small ($approx$ 2%) reduction in the effective mass ratio, $m^{*}/m$, with respect to the standard value for GaAs/AlGaAs devices.
We have studied the origin of switching (telegraph) noise at low temperature in lateral quantum structures defined electrostatically in GaAs/AlGaAs heterostructures by surface gates. The noise was measured by monitoring the conductance fluctuations a
The MBE-grown GaAs/AlGaAs superlattice with Si-doped barriers has been used to study a 3D-2D transition under the influence of the in-plane component of applied magnetic field. The longitudinal magnetoresistance data measured in tilted magnetic field
We observed a slow relaxation of magnetoresistance in response to applied magnetic field in selectively doped p-GaAs-AlGaAs structures with partially filled upper Hubbard band. We have paid a special attention to exclude the effects related to temper
We have studied the efficacy of (NH4)2Sx surface passivation on the (311)A GaAs surface. We report XPS studies of simultaneously-grown (311)A and (100) heterostructures showing that the (NH4)2Sx solution removes surface oxide and sulfidizes both surf
We have fabricated AlGaAs/GaAs heterostructure devices in which the conduction channel can be populated with either electrons or holes simply by changing the polarity of a gate bias. The heterostructures are entirely undoped, and carriers are instead