ترغب بنشر مسار تعليمي؟ اضغط هنا

ARPES on Na$_{0.6}$CoO$_{2}$: Fermi surface, extended flat dispersion, and unusual band splitting

55   0   0.0 ( 0 )
 نشر من قبل Hong Ding
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic structure of single crystals Na$_{0.6}$CoO$_2$, which are closely related to the superconducting Na$_{0.3}$CoO$_2$.$y$H$_2$O ($T_c sim 5K$), is studied by angle-resolved photoelectron spectroscopy. While the measured Fermi surface is found to be consistent with the prediction of a local density band theory, the energy dispersion is highly renormalized, with an anisotropy along the two principle axes ($Gamma$-$K$, $Gamma$-$M$). Our ARPES result also indicates that an extended flat band is formed slightly above $E_F$ along $Gamma$-$K$. In addition, an unusual band splitting is observed in the vicinity of the Fermi surface along the $Gamma$-$M$ direction, which differs from the predicted bilayer splitting.

قيم البحث

اقرأ أيضاً

The electronic structure of the high-T_c superconductor Tl2Ba2CuO6+d is studied by ARPES. For a very overdoped Tc=30K sample, the Fermi surface consists of a single large hole pocket centered at (pi,pi) and is approaching a topological transition. Al though a superconducting gap with d_x^2-y^2 symmetry is tentatively identified, the quasiparticle evolution with momentum and binding energy exhibits a marked departure from the behavior observed in under and optimally doped cuprates. The relevance of these findings to scattering, many-body, and quantum-critical phenomena is discussed.
The phase diagram of non-hydrated Na(x)CoO(2) has been determined by changing the Na content x using a series of chemical reactions. As x increases from 0.3, the ground state goes from a paramagnetic metal to a charge-ordered insulator (at x=1/2) to a `Curie-Weiss metal (around 0.70), and finally to a weak-moment magnetically ordered state (x>0.75). The unusual properties of the state at 1/2 (including particle-hole symmetry at low T and enhanced thermal conductivity) are described. The strong coupling between the Na ions and the holes is emphasized.
While multiband systems are usually considered for flat-band physics, here we study one-band models that have flat portions in the dispersion to explore correlation effects in the 2D repulsive Hubbard model in an intermediate coupling regime. The FLE X+DMFT~(the dynamical mean-field theory combined with the fluctuation exchange approximation) is used to show that we have a crossover from ferromagnetic to antiferromagnetic spin fluctuations as the band filling is varied, which triggers a crossover from triplet to singlet pairings with a peculiar filling dependence that is dominated by the size of the flat region in the dispersion. A curious manifestation of the flat part appears as larger numbers of nodal lines associated with pairs extended in real space. We further detect non-Fermi liquid behavior in the momentum distribution function, frequency dependence of the self-energy and spectral function. These indicate correlation physics peculiar to flat-band systems.
Angle-resolved photoemission spectroscopy (ARPES) is used to study the band dispersion and the quasiparticle scattering rates in two ferropnictides systems. Our ARPES results show linear-in-energy dependent scattering rates which are constant in a wi de range of control parameter and which depend on the orbital character of the bands. We demonstrate that the linear energy dependence gives rise to weakly dispersing band with a strong mass enhancement when the band maximum crosses the chemical potential. In the superconducting phase the related small effective Fermi energy favors a Bardeen-Cooper-Schrieffer (BCS),cite{Bardeen1957}-Bose-Einstein (BE),cite{Bose1924} crossover state.
We report the in-plane resistivity and magnetic susceptibility of the layered cobalt oxide Na$_{0.35}$CoO$_{2}{cdot}1.3$H$_{2}$O single crystal. The temperature dependence of the resistivity shows metallic behavior from room temperature to the superc onducting transition temperature $T_{c}$ of 4.5 K. Sharp resistive transition, zero resistivity and almost perfect superconducting volume fraction below $T_{c}$ indicate the good quality and the bulk superconductivity of the single crystal. The upper critical field $H_{c2}$ and the coherence length $xi$ are obtained from the resistive transitions in magnetic field parallel to the c-axis and the $ab$-plane. The anisotropy of $xi$, $xi_{ab} / xi_{c} =$ 12 nm/1.3 nm $simeq$ 9.2, suggests that this material is considered to be an anisotropic three dimensional superconductor. In the field parallel to the $ab$-plane, $H_{c2}$ seems to be suppressed to the value of Pauli paramagnetic limit. It may indicate the spin singlet superconductivity in the cobalt oxide.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا