ترغب بنشر مسار تعليمي؟ اضغط هنا

Excess Modes and Enhanced Scattering in Rare-Earth Doped Amorphous Silicon Thin Films

58   0   0.0 ( 0 )
 نشر من قبل Barry Zink
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report specific heat and thermal conductivity of gadolinium- and yttrium-doped amorphous silicon thin films measured using silicon-nitride membrane-based microcalorimeters. Addition of gadolinium or yttrium to the amorphous silicon network reduces the thermal conductivity over a wide temperature range while significantly increasing the specific heat. This result indicates that a large number of non-propagating states are added to the vibrational spectrum that are most likely caused either by localized vibration of the dopant atom in a Si cage, or softening of the material forming the cage structures. High-resolution cross-sectional electron micrographs reveal columnar features in Gd-doped material which do not appear in pure amorphous silicon. Scattering from both the nanoscaled columns and the filled-cage structures play a role in the reduced thermal conductivity in the rare-earth doped amorphous semiconductor. The overall result is an amorphous solid with a large bump in $C/T^{3}$ and no plateau in thermal conductivity.



قيم البحث

اقرأ أيضاً

We studied the resistive memory switching in pulsed laser deposited amorphous LaHoO3 (LHO) thin films for non-volatile resistive random access memory (RRAM) applications. Nonpolar resistive switching (RS) was achieved in PtLHOPt memory cells with all four possible RS modes ( positive unipolar, positive bipolar, negative unipolar, and negative bipolar) having high RON and ROFF ratios (in the range of 104 to 105) and non-overlapping switching voltages (set voltage, VON 3.6 to 4.2 V and reset voltage, VOFF 1.3 to 1.6 V) with a small variation of about 5 to 8 percent. X ray photoelectron spectroscopic studies together with temperature dependent switching characteristics revealed the formation of metallic holmium (Ho) and oxygen vacancies (VO) constituted conductive nanofilaments (CNFs) in the low resistance state (LRS). Detailed analysis of current versus voltage characteristics further corroborated the formation of CNFs based on metal like (Ohmic) conduction in LRS. Simmons Schottky emission was found to be the dominant charge transport mechanism in the high resistance state.
We show that harmonic vibrations in amorphous silicon can be decomposed to transverse and longitudinal components in all frequency range even in the absence of the well defined wave vector ${bf q}$. For this purpose we define the transverse component of the eigenvector with given $omega$ as a component, which does not change the volumes of Voronoi cells around atoms. The longitudinal component is the remaining orthogonal component. We have found the longitudinal and transverse components of the vibrational density of states for numerical model of amorphous silicon. The vibrations are mostly transverse below 7 THz and above 15 THz. In the frequency interval in between the vibrations have a longitudinal nature. Just this sudden transformation of vibrations at 7 THz from almost transverse to almost longitudinal ones explains the prominent peak in the diffusivity of the amorphous silicon just above 7 THz.
116 - D.R. Queen , X. Liu , J. Karel 2015
In $e$-beam evaporated amorphous silicon ($a$-Si), the densities of two-level systems (TLS), $n_{0}$ and $overline{P}$, determined from specific heat $C$ and internal friction $Q^{-1}$ measurements, respectively, have been shown to vary by over three orders of magnitude. Here we show that $n_{0}$ and $overline{P}$ are proportional to each other with a constant of proportionality that is consistent with the measurement time dependence proposed by Black and Halperin and does not require the introduction of additional anomalous TLS. However, $n_{0}$ and $overline{P}$ depend strongly on the atomic density of the film ($n_{rm Si}$) which depends on both film thickness and growth temperature suggesting that the $a$-Si structure is heterogeneous with nanovoids or other lower density regions forming in a dense amorphous network. A review of literature data shows that this atomic density dependence is not unique to $a$-Si. These findings suggest that TLS are not intrinsic to an amorphous network but require a heterogeneous structure to form.
The symmetry of local moments plays a defining role in the nature of exotic grounds states stabilized in frustrated magnetic materials. We present inelastic neutron scattering (INS) measurements of the crystal electric field (CEF) excitations in the family of compounds MgRE$_2$Se$_4$ (RE $in$ ${$Ho, Tm, Er and Yb$}$). These compounds form in the spinel structure, with the rare earth ions comprising a highly frustrated pyrochlore sublattice. Within the symmetry constraints of this lattice, we fit both the energies and intensities of observed modes in the INS spectra to determine the most likely CEF Hamiltonian for each material and comment on the ground state wavefunctions in the local electron picture. In this way, we experimentally confirm MgTm$_2$Se$_4$ has a non-magnetic ground state, and MgYb$_2$Se$_4$ has effective $S=frac{1}{2}$ spins with $g_parallel = 5.188(79)$ and $g_perp = 0.923(85)~mu_B$. The spectrum of MgHo$_2$Se$_4$ indicates a ground state doublet containing Ising spins with $g_parallel = 2.72(46)$, though low-lying CEF levels are also seen at thermally accessible energies $delta_E = 0.591(36)$, 0.945(30) and 2.88(7)~meV, which can complicate interpretation. These results are used to comment on measured magnetization data of all compounds, and are compared to published results on the material MgEr$_2$Se$_4$.
We report on non equilibrium field effect in insulating amorphous NbSi thin films having different Nb contents and thicknesses. The hallmark of an electron glass, namely the logarithmic growth of a memory dip in conductance versus gate voltage curves , is observed in all the films after a cooling from room temperature to 4.2 K. A very rich phenomenology is demonstrated. While the memory dip width is found to strongly vary with the film parameters, as was also observed in amorphous indium oxide films, screening lengths and temperature dependence of the dynamics are closer to what is observed in granular Al films. Our results demonstrate that the differentiation between continuous and discontinuous systems is not relevant to understand the discrepancies reported between various systems in the electron glass features. We suggest instead that they are not of fundamental nature and stem from differences in the protocols used and in the electrical inhomogeneity length scales within each material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا