ترغب بنشر مسار تعليمي؟ اضغط هنا

Discretized opinion dynamics of Deffuant on scale-free networks

49   0   0.0 ( 0 )
 نشر من قبل Adriano Sousa A. O. Sousa
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The consensus model of Deffuant et al is simplified by allowing for many discrete instead of infinitely many continuous opinions, on a directed Barabasi-Albert network. A simple scaling law is observed. We then introduce noise and also use a more realistic network and compare the results. Finally, we look at a multi-layer model representing various age levels, and we include advertising effects.



قيم البحث

اقرأ أيضاً

81 - M. Baiesi , S. S. Manna 2003
Contrary to many recent models of growing networks, we present a model with fixed number of nodes and links, where it is introduced a dynamics favoring the formation of links between nodes with degree of connectivity as different as possible. By appl ying a local rewiring move, the network reaches equilibrium states assuming broad degree distributions, which have a power law form in an intermediate range of the parameters used. Interestingly, in the same range we find non-trivial hierarchical clustering.
Recent studies introduced biased (degree-dependent) edge percolation as a model for failures in real-life systems. In this work, such process is applied to networks consisting of two types of nodes with edges running only between nodes of unlike type . Such bipartite graphs appear in many social networks, for instance in affiliation networks and in sexual contact networks in which both types of nodes show the scale-free characteristic for the degree distribution. During the depreciation process, an edge between nodes with degrees k and q is retained with probability proportional to (kq)^(-alpha), where alpha is positive so that links between hubs are more prone to failure. The removal process is studied analytically by introducing a generating functions theory. We deduce exact self-consistent equations describing the system at a macroscopic level and discuss the percolation transition. Critical exponents are obtained by exploiting the Fortuin-Kasteleyn construction which provides a link between our model and a limit of the Potts model.
Biased (degree-dependent) percolation was recently shown to provide new strategies for turning robust networks fragile and vice versa. Here we present more detailed results for biased edge percolation on scale-free networks. We assume a network in wh ich the probability for an edge between nodes $i$ and $j$ to be retained is proportional to $(k_ik_j)^{-alpha}$ with $k_i$ and $k_j$ the degrees of the nodes. We discuss two methods of network reconstruction, sequential and simultaneous, and investigate their properties by analytical and numerical means. The system is examined away from the percolation transition, where the size of the giant cluster is obtained, and close to the transition, where nonuniversal critical exponents are extracted using the generating functions method. The theory is found to agree quite well with simulations. By introducing an extension of the Fortuin-Kasteleyn construction, we find that biased percolation is well described by the $qto 1$ limit of the $q$-state Potts model with inhomogeneous couplings.
When the interactions of agents on a network are assumed to follow the Deffuant opinion dynamics model, the outcomes are known to depend on the structure of the underlying network. This behavior cannot be captured by existing mean-field approximation s for the Deffuant model. In this paper, a generalised mean-field approximation is derived that accounts for the effects of network topology on Deffuant dynamics through the degree distribution or community structure of the network. The accuracy of the approximation is examined by comparison with large-scale Monte Carlo simulations on both synthetic and real-world networks.
Extreme events taking place on networks are not uncommon. We show that it is possible to manipulate the extreme events occurrence probabilities and its distribution over the nodes on scale-free networks by tuning the nodal capacity. This can be used to reduce the number of extreme events occurrences on a network. However monotonic nodal capacity enhancements, beyond a point, do not lead to any substantial reduction in the number of extreme events. We point out the practical implication of this result for network design in the context of reducing extreme events occurrences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا