ترغب بنشر مسار تعليمي؟ اضغط هنا

Microstructure and velocity fluctuations in sheared suspensions

119   0   0.0 ( 0 )
 نشر من قبل German Drazer
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The velocity fluctuations present in macroscopically homogeneous suspensions of neutrally buoyant, non-Brownian spheres undergoing simple shear flow, and their dependence on the microstructure developed by the suspensions, are investigated in the limit of vanishingly small Reynolds numbers using Stokesian dynamics simulations. We show that, in the dilute limit, the standard deviation of the velocity fluctuations is proportional to the volume fraction, in both the transverse and the flow directions, and that a theoretical prediction, which considers only for the hydrodynamic interactions between isolated pairs of spheres, is in good agreement with the numerical results at low concentrations. We also simulate the velocity fluctuations that would result from a random hard-sphere distribution of spheres in simple shear flow, and thereby investigate the effects of the microstructure on the velocity fluctuations. Analogous results are discussed for the fluctuations in the angular velocity of the suspended spheres. In addition, we present the probability density functions for all the linear and angular velocity components, and for three different concentrations, showing a transition from a Gaussian to an Exponential and finally to a Stretched Exponential functional form as the volume fraction is decreased. We also show that, although the pair distribution function recovers its fore-aft symmetry in dilute suspensions, it remains anisotropic and that this anisotropy can be accurately described by assuming the complete absence of any permanent doublets of spheres. We finally present a simple correction to the analysis of laser-Doppler velocimetry measurements.



قيم البحث

اقرأ أيضاً

We investigate velocity probability distribution functions (PDF) of sheared hard-sphere suspensions. As observed in our Stokes flow simulations and explained by our single-particle theory, these PDFs can show pronounced deviations from a Maxwell-Bolt zmann distribution. The PDFs are symmetric around zero velocity and show a Gaussian core and exponential tails over more than six orders of magnitude of probability. Following the excellent agreement of our theory and simulation data, we demonstrate that the distribution functions scale with the shear rate, the particle volume concentration, as well as the fluid viscosity.
We study the rheological properties of a granular suspension subject to constant shear stress by constant volume molecular dynamics simulations. We derive the system `flow diagram in the volume fraction/stress plane $(phi,F)$: at low $phi$ the flow i s disordered, with the viscosity obeying a Bagnold-like scaling only at small $F$ and diverging as the jamming point is approached; if the shear stress is strong enough, at higher $phi$ an ordered flow regime is found, the order/disorder transition being marked by a sharp drop of the viscosity. A broad jamming region is also observed where, in analogy with the glassy region of thermal systems, slow dynamics followed by kinetic arrest occurs when the ordering transition is prevented.
78 - Jikai Wang , J. M. Schwarz , 2017
Particle suspensions, present in many natural and industrial settings, typically contain aggregates or other microstructures that can complicate macroscopic flow behaviors and damage processing equipment. Recent work found that applying uniform perio dic shear near a critical transition can reduce fluctuations in the particle concentration across all length scales, leading to a hyperuniform state. However, this strategy for homogenization requires fine tuning of the strain amplitude. Here we show that in a model of sedimenting particles under periodic shear, there is a well-defined regime at low sedimentation speed where hyperuniform scaling automatically occurs. Our simulations and theoretical arguments show that the homogenization extends up to a finite lengthscale that diverges as the sedimentation speed approaches zero.
Dense suspensions are non-Newtonian fluids which exhibit strong shear thickening and normal stress differences. Using numerical simulation of extensional and shear flows, we investigate how rheological properties are determined by the microstructure which is built under flows and by the interactions between particles. By imposing extensional and shear flows, we can assess the degree of flow-type dependence in regimes below and above thickening. Even when the flow-type dependence is hindered, nondissipative responses, such as normal stress differences, are present and characterise the non-Newtonian behaviour of dense suspensions.
The phenomenon of shear-induced jamming is a factor in the complex rheological behavior of dense suspensions. Such shear-jammed states are fragile, i.e., they are not stable against applied stresses that are incompatible with the stress imposed to cr eate them. This peculiar flow-history dependence of the stress response is due to flow-induced microstructures. To examine jammed states realized under constant shear stress, we perform dynamic simulations of non-Brownian particles with frictional contact forces and hydrodynamic lubrication forces. We find clear signatures that distinguish these fragile states from the more conventional isotropic jammed states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا