ترغب بنشر مسار تعليمي؟ اضغط هنا

Normal-state Hall Angle and Magnetoresistance in quasi-2D Heavy Fermion CeCoIn_5 near a Quantum Critical Point

67   0   0.0 ( 0 )
 نشر من قبل Yasuyuki Nakajima
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The normal-state Hall effect and magnetoresisitance (MR) have been measured in the quasi-2D heavy fermion superconductor CeCoIn_5. In the non-Fermi liquid region where the reistivity rho_xx exhibits an almost perfect T-linear dependence, the Hall angle varies as cot theta_H propto T^2 and the MR displays a strong violation of Kohlers rule. We demonstrate a novel relation between the MR and the Hall conductivity, Delta rho_xx/rho_xx propto (sigma_xy rho_xx)^2. These results bear a striking resemblance to the normal-state properties of high-T_c cuprates, indicating universal transport properties in the presence of quasi-2D antiferromagnetic fluctuations near a quantum critical point.



قيم البحث

اقرأ أيضاً

The thermal conductivity of the heavy-fermion superconductor CeCoIn_5 has been studied in a magnetic field rotating within the 2D planes. A clear fourfold symmetry of the thermal conductivity which is characteristic of a superconducting gap with node s along the (+-pi,+-pi)-directions is resolved. The thermal conductivity measurement also reveals a first order transition at H_c2, indicating a Pauli limited superconducting state. These results indicate that the symmetry most likely belongs to d_{x^2-y^2}, implying that the anisotropic antiferromagnetic fluctuation is relevant to the superconductivity.
445 - J. K. Dong , H. Zhang , X. Qiu 2010
The interplay between magnetism and superconductivity has been a central issue in unconventional superconductors. While the dynamic magnetism could be the source of electron pairing, the static magnetism is generally believed to compete with supercon ductivity. In this sense, the observation of Q phase, the coupled spin-density wave order and superconductivity, in the heavy-fermion superconductor CeCoIn5 is very puzzling. Whether this Q phase origins from the novel Fulde-Ferrel-Larkin-Ovchinnikov state is under hot debate. Here we report the resistivity and thermal conductivity study of a newly discovered heavy-fermion superconductor Ce2PdIn8 down to 50 mK. We find an unusual field-induced quantum critical point at the upper critical field Hc2 and unconventional nodal superconductivity in Ce2PdIn8. The jump of thermal conductivity k(H)/T near Hc2 suggests a first-order-like phase transition at low temperatures. These results mimic the features of the Q phase in CeCoIn5, implying that Ce2PdIn8 is another promising compound to investigate the exotic Q phase and FFLO state. The comparison between CeCoIn5 and Ce2PdIn8 may help to clarify the origin of the Q phase.
Recent experiments on quantum criticality in the Ge-substituted heavy-electron material YbRh2Si2 under magnetic field have revealed a possible non-Fermi liquid (NFL) strange metal (SM) state over a finite range of fields at low temperatures, which st ill remains a puzzle. In the SM region, the zero-field antiferromagnetism is suppressed. Above a critical field, it gives way to a heavy Fermi liquid with Kondo correlation. The T (temperature)-linear resistivity and the T-logarithmic followed by a power-law singularity in the specific heat coefficient at low T, salient NFL behaviours in the SM region, are un-explained. We offer a mechanism to address these open issues theoretically based on the competition between a quasi-2d fluctuating short-ranged resonant- valence-bonds (RVB) spin-liquid and the Kondo correlation near criticality. Via a field-theoretical renormalization group analysis on an effective field theory beyond a large-N approach to an anti- ferromagnetic Kondo-Heisenberg model, we identify the critical point, and explain remarkably well both the crossovers and the SM behaviour.
150 - Y. Y. Chang , F. Hsu , S. Kirchner 2018
The heavy fermion CeMIn5 family with M = Co, Rh, Ir provide a prototypical example of strange superconductors with unconventional d-wave pairing and strange metal normal state, emerged near an antiferromagnetic quantum critical point. The microscopic origin of strange superconductor and its link to antiferromagnetic quantum criticality and strange metal state are still open issues. We propose a microscopic mechanism for strange superconductor, based on the coexistence and competition between the Kondo correlation and the quasi-2d short-ranged antiferromagnetic resonating-valence-bond spin-liquid near the antiferromagnetic quantum critical point via a large-N Kondo-Heisenberg model and renormalization group analysis beyond the mean-field level. We find the coexistence (competition) between the two types of correlations well explains the overall features of superconducting and strange metal state. The interplay of these two effects provides a qualitative understanding on how superconductivity emerges from the SM state and the observed superconducting phase diagrams for CeMIn5 near the anti-ferromagnetic quantum critical point.
264 - P. M. C. Rourke 2004
Point-contact spectroscopy was performed on single crystals of the heavy-fermion superconductor CeCoIn_5 between 150 mK and 2.5 K. A pulsed measurement technique ensured minimal Joule heating over a wide voltage range. The spectra show Andreev-reflec tion characteristics with multiple structures which depend on junction impedance. Spectral analysis using the generalized Blonder-Tinkham-Klapwijk formalism for d-wave pairing revealed two coexisting order parameter components, with amplitudes Delta_1 = 0.95 +/- 0.15 meV and Delta_2 = 2.4 +/- 0.3 meV, which evolve differently with temperature. Our observations indicate a highly unconventional pairing mechanism, possibly involving multiple bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا