ﻻ يوجد ملخص باللغة العربية
The thermal conductivity of the heavy-fermion superconductor CeCoIn_5 has been studied in a magnetic field rotating within the 2D planes. A clear fourfold symmetry of the thermal conductivity which is characteristic of a superconducting gap with nodes along the (+-pi,+-pi)-directions is resolved. The thermal conductivity measurement also reveals a first order transition at H_c2, indicating a Pauli limited superconducting state. These results indicate that the symmetry most likely belongs to d_{x^2-y^2}, implying that the anisotropic antiferromagnetic fluctuation is relevant to the superconductivity.
The normal-state Hall effect and magnetoresisitance (MR) have been measured in the quasi-2D heavy fermion superconductor CeCoIn_5. In the non-Fermi liquid region where the reistivity rho_xx exhibits an almost perfect T-linear dependence, the Hall ang
Point-contact spectroscopy was performed on single crystals of the heavy-fermion superconductor CeCoIn_5 between 150 mK and 2.5 K. A pulsed measurement technique ensured minimal Joule heating over a wide voltage range. The spectra show Andreev-reflec
The superconducting gap structure of recently discovered heavy fermion superconductor PrOs4Sb12 was investigated by using thermal transport measurements in magnetic field rotated relative to the crystal axes. We demonstrate that a novel change in the
We report field-orientation specific heat studies of the pressure-induced heavy fermion superconductor CeRhIn5. Theses experiments provide the momentum-dependent superconducting gap function for the first time in any pressure-induced superconductor.
The superconducting gap structure of recently discovered heavy fermion CePt_3Si without spatial inversion symmetry was investigated by thermal transport measurements down to 40 mK. In zero field a residual T-linear term was clearly resolved as T-> 0,