ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray-induced electrical conduction in the insulating phase of thiospinel CuIr2S4

64   0   0.0 ( 0 )
 نشر من قبل Takao Furubayashi
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Effects of x-ray irradiation on the crystal structure and the electrical resistance were examined at low temperatures for the insulating phase of spinel compound CuIr2S4. We found that the resistance decreases by more than five decades by irradiation at 8.5 K. The structural change from triclinic to tetragonal was observed at the same time. The x-ray-induced conductance is deduced to result from the destruction of Ir4+ dimers formed in the insulating phase. Slow relaxation of the resistance in the x-ray-induced state is also reported.



قيم البحث

اقرأ أيضاً

118 - D. J. Hilton 2007
We use optical-pump terahertz-probe spectroscopy to investigate the near-threshold behavior of the photoinduced insulator-to-metal (IM) transition in vanadium dioxide thin films. Upon approaching Tc a reduction in the fluence required to drive the IM transition is observed, consistent with a softening of the insulating state due to an increasing metallic volume fraction (below the percolation limit). This phase coexistence facilitates the growth of a homogeneous metallic conducting phase following superheating via photoexcitation. A simple dynamic model using Bruggeman effective medium theory describes the observed initial condition sensitivity.
We report on large negative magnetoresistance observed in ferromagnetic thiospinel compound CuCrZrS$_{4}$. Electrical resistivity increased with decreasing temperature according to the form proportional to $textrm{exp}(T_{0}/T)^{1/2} $, derived from variable range hopping with strong electron-electron interaction. Resistivity under magnetic fields was expressed by the same form with the characteristic temperature T0 decreasing with increasing magnetic field. Magnetoresistance ratio $rho (T,0)/rho(T,H)$ is 1.5 at 100 K for H=90 kOe and increases divergently with decreasing temperature reaching 80 at 16 K. Results of magnetization measurements are also presented. Possible mechanism of the large magnetoresistance is discussed.
Crystal structure of spinel compound CuIr$_{2}$S$_{4}$ was examined by powder X-ray diffraction for the insulating phase below the metal-insulator transition at $T_{MI}$ = 230 K. The superstructure spots are reproduced by considering the displacement of Ir atoms. A model for the ionic ordering of Ir$^{4+}$ and Ir$^{3+}$ with the same number is proposed for the insulating phase on the basis of the structural analysis. The model suggests that the structural change at $T_{MI}$ is driven by the formation Ir$^{4+}$ dimers. In addition, we found that the superstructure spots becomes significantly weak below 60 K, without any significant effects on electric and magnetic properties. Possible mechanism for the transition is discussed.
NaOsO3 hosts a rare manifestation of a metal-insulator transition driven by magnetic correlations, placing the magnetic exchange interactions in a central role. We use resonant inelastic x-ray scattering to directly probe these magnetic exchange inte ractions. A dispersive and strongly gapped (58 meV) excitation is observed indicating appreciable spin-orbit coupling in this 5d3 system. The excitation is well described within a minimal model Hamiltonian with strong anisotropy and Heisenberg exchange (J1=J2=13.9 meV). The observed behavior places NaOsO3 on the boundary between localized and itinerant magnetism.
High-Tc superconductivity in cuprates is generally believed to arise from carrier doping an antiferromagnetic Mott (AFM) insulator. Theoretical proposals and emerging experimental evidence suggest that this process leads to the formation of intriguin g electronic liquid crystal phases. These phases are characterized by ordered charge and/or spin density modulations, and thought to be intimately tied to the subsequent emergence of superconductivity. The most elusive, insulating charge-stripe crystal phase is predicted to occur when a small density of holes is doped into the charge-transfer insulator state, and would provide a missing link between the undoped parent AFM phase and the mysterious, metallic pseudogap. However, due to experimental challenges, it has been difficult to observe this phase. Here, we use surface annealing to extend the accessible doping range in Bi-based cuprates and achieve the lightly-doped charge-transfer insulating state of a cuprate Bi2Sr2CaCu2O8+x. In this insulating state with a charge transfer gap at the order of ~1 eV, using spectroscopic-imaging scanning tunneling microscopy, we discover a unidirectional charge-stripe order with a commensurate 4a0 period along the Cu-O-Cu bond. Importantly, this insulating charge-stripe crystal phase develops before the onset of the pseudogap and the formation of the Fermi surface. Our work provides new insights into the microscopic origin of electronic inhomogeneity in high-Tc cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا