ﻻ يوجد ملخص باللغة العربية
We study the problem of dielectric response in the strong coupling regime of a charge transfer insulator. The frequency and wave number dependence of the dielectric function $epsilon ({bf q},omega)$ and its inverse $epsilon ^{-1}({bf q},omega)$ is the main object of consideration. We show that the problem, in general, cannot be reduced to a calculation within the Hubbard model, which takes into account only a restricted number of electronic states near the Fermi energy. The contribution of the rest of the system to the longitudinal response (i.e. to $epsilon ^{-1}({bf q},omega)$) is essential for the whole frequency range. With the use of the spectral representation of the two-particle Greens function we show that the problem may be divided into two parts: into the contributions of the weakly correlated and the Hubbard subsystems. For the latter we propose an approach that starts from the correlated paramagnetic ground state with strong antiferromagnetic fluctuations. We obtain a set of coupled equations of motion for the two-particle Greens function that may be solved by means of the projection technique. The solution is expressed by a two particle basis that includes the excitonic states with electron and hole separated at various distances. We apply our method to the multiband Hubbard (Emery) model that describes layered cuprates. We show that strongly dispersive branches exist in the excitonic spectrum of the minimal Emery model ($1/U_d=U_p=t_{pp}=0$) and consider the dependence of the spectrum on finite oxygen hopping $t_{pp}$ and on-site repulsion $U_p$. The relationship of our calculations to electron energy loss spectroscopy is discussed.
The evolution of the electronic structures of strongly correlated insulators with doping has long been a central fundamental question in condensed matter physics; it is also of great practical relevance for applications. We have studied the evolution
We compute from first principles the effective interaction parameters appropriate for a low-energy description of the rare-earth nickelate LuNiO$_{3}$ involving the partially occupied $e_g$ states only. The calculation uses the constrained random-pha
Recent experimental discoveries have brought a diverse set of broken symmetry states to the center stage of research on cuprate superconductors. Here, we focus on a thematic understanding of the diverse phenomenology by exploring a strong-coupling me
We study a model for the metal-insulator (MI) transition in the rare-earth nickelates RNiO$_3$, based upon a negative charge transfer energy and coupling to a rock-salt like lattice distortion of the NiO$_6$ octahedra. Using exact diagonalization and
We have investigated the dispersion renormalization $Z_{disp}$ in La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) over the wide doping range of $x=0.03-0.30$, for binding energies extending to several hundred meVs. Strong correlation effects conspire in such a way th