ﻻ يوجد ملخص باللغة العربية
We have investigated the dispersion renormalization $Z_{disp}$ in La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) over the wide doping range of $x=0.03-0.30$, for binding energies extending to several hundred meVs. Strong correlation effects conspire in such a way that the system exhibits an LDA-like dispersion which essentially `undresses ($Z_{disp}to 1$) as the Mott insulator is approached. Our finding that the Mott insulator contains `nascent or `preformed metallic states with a vanishing spectral weight offers a challenge to existing theoretical scenarios for cuprates.
Detailed understanding of the role of single dopant atoms in host materials has been crucial for the continuing miniaturization in the semiconductor industry as local charging and trapping of electrons can completely change the behaviour of a device.
How a Mott insulator develops into a weakly coupled metal upon doping is a central question to understanding various emergent correlated phenomena. To analyze this evolution and its connection to the high-$T_c$ cuprates, we study the single-particle
We show that lightly doped holes will be self-trapped in an antiferromagnetic spin background at low-temperatures, resulting in a spontaneous translational symmetry breaking. The underlying Mott physics is responsible for such novel self-localization
The evolution from an anomalous metallic phase to a Mott insulator within the two-dimensional Hubbard model is investigated by means of the Cellular Dynamical Mean-Field Theory. We show that the density-driven Mott metal-insulator transition is appro
The spectral weight evolution of the low-dimensional Mott insulator TiOCl upon alkali-metal dosing has been studied by photoelectron spectroscopy. We observe a spectral weight transfer between the lower Hubbard band and an additional peak upon electr