ﻻ يوجد ملخص باللغة العربية
Short-range electron-electron interactions are incorporated into the network model of the integer quantum Hall effect. In the presence of interactions, the electrons, propagating along one link, experience exchange scattering off the Friedel oscillations of the density matrix of electrons on the neighboring links. As a result, the energy dependence of the transmission, ${cal T}(epsilon)$, of the node, connecting the two links, develops an anomaly at the Fermi level, $epsilon=epsilon_F$. We show that this interaction-induced anomaly in ${cal T}(epsilon)$ translates into the anomalous behavior of the Hall conductivity, $sigma_{xy}( u)$, where $ u$ is the filling factor (we assume that the electrons are {em spinless}). At low temperatures, $T to 0$, the evolution of the quantized $sigma_{xy}$ with decreasing $ u$ proceeds as $1to 2 to 0$, in apparent violation of the semicircle relation. The anomaly in ${cal T}(epsilon)$ also affects the temperature dependence of the peak in the diagonal conductivity, $sigma_{xx}( u, T)$. In particular, unlike the case of noninteracting electrons,the maximum value of $sigma_{xx}$ stays at $sigma_{xx} = 0.5$ within a wide temperature interval.
In recent interference experiments with an electronic Fabry-Perot interferometer (FPI), implemented in the integer quantum Hall effect regime, a flux periodicity of $h/2e$ was observed at bulk fillings $ u_B>2.5$. The halved periodicity was accompani
Conductivity of Integer Quantum Hall Effect (IQHE) may be expressed as the topological invariant composed of the two - point Green function. Such a topological invariant is known both for the case of homogeneous systems with intrinsic Anomalous Quant
We report on numerical studies into the interplay of disorder and electron-electron interactions within the integer quantum Hall regime, where the presence of a strong magnetic field and two-dimensional confinement of the electronic system profoundly
We present a calculation for the second moment of the local density of states in a model of a two-dimensional quantum dot array near the quantum Hall transition. The quantum dot array model is a realistic adaptation of the lattice model for the quant
We study the spectral properties of infinite rectangular quantum graphs in the presence of a magnetic field. We study how these properties are affected when three-dimensionality is considered, in particular, the chaological properties. We then establ