ترغب بنشر مسار تعليمي؟ اضغط هنا

Hartree-Fock Interactions in the Integer Quantum Hall Effect

199   0   0.0 ( 0 )
 نشر من قبل Rudolf A. Roemer
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on numerical studies into the interplay of disorder and electron-electron interactions within the integer quantum Hall regime, where the presence of a strong magnetic field and two-dimensional confinement of the electronic system profoundly affects thermodynamic and transport properties. We emphasise the behaviour of the electronic compressibility, the local density of states, and the Kubo conductivity. Our treatment of the electron-electron interactions relies on the Hartree-Fock approximation so as to achieve system sizes comparable to experimental situations. Our results clearly exhibit manifestations of various interaction-mediated features, such as non-linear screening, local charging, and g-factor enhancement, implying the inadequacy of independent-particle models for comparison with experimental results.



قيم البحث

اقرأ أيضاً

231 - C.X.Zhang , M.A.Zubkov 2020
Conductivity of Integer Quantum Hall Effect (IQHE) may be expressed as the topological invariant composed of the two - point Green function. Such a topological invariant is known both for the case of homogeneous systems with intrinsic Anomalous Quant um Hall Effect (AQHE) and for the case of IQHE in the inhomogeneous systems. In the latter case we may speak, for example, of the AQHE in the presence of elastic deformations and of the IQHE in presence of magnetic field. The topological invariant for the general case of inhomogeneous systems is expressed through the Wigner transformed Green functions and contains Moyal product. When it is reduced to the expression for the IQHE in the homogeneous systems the Moyal product is reduced to the ordinary one while the Wigner transformed Green function (defined in phase space) is reduced to the Green function in momentum space. Originally the mentioned above topological representation has been derived for the non - interacting systems. We demonstrate that in a wide range of different cases in the presence of interactions the Hall conductivity is given by the same expression, in which the noninteracting two - point Green function is substituted by the complete two - point Green function with the interactions taken into account. Several types of interactions are considered including the contact four - fermion interactions, Yukawa and Coulomb interactions. We present the complete proof of this statement up to the two loops, and argue that the similar result remains to all orders of perturbation theory. It is based on the incorporation of Wigner - Weyl calculus to the perturbation theory. We, therefore, formulate Feynmann rules of diagram technique in terms of the Wigner transformed propagators.
157 - N. Goldman , P. Gaspard 2007
We study the spectral properties of infinite rectangular quantum graphs in the presence of a magnetic field. We study how these properties are affected when three-dimensionality is considered, in particular, the chaological properties. We then establ ish the quantization of the Hall transverse conductivity for these systems. This quantization is obtained by relating the transverse conductivity to topological invariants. The different integer values of the Hall conductivity are explicitly computed for an anisotropic diffusion system which leads to fractal phase diagrams.
The nonlinear Hall effect is an unconventional response, in which a voltage can be driven by two perpendicular currents in the Hall-bar measurement. Unprecedented in the family of the Hall effects, it can survive time-reversal symmetry but is sensiti ve to the breaking of discrete and crystal symmetries. It is a quantum transport phenomenon that has deep connection with the Berry curvature. However, a full quantum description is still absent. Here we construct a quantum theory of the nonlinear Hall effect by using the diagrammatic technique. Quite different from nonlinear optics, nearly all the diagrams account for the disorder effects, which play decisive role in the electronic transport. After including the disorder contributions in terms of the Feynman diagrams, the total nonlinear Hall conductivity is enhanced but its sign remains unchanged for the 2D tilted Dirac model, compared to the one with only the Berry curvature contribution. We discuss the symmetry of the nonlinear conductivity tensor and predict a pure disorder-induced nonlinear Hall effect for point groups $C_{3}$, $C_{3h}$, $C_{3v}$, $D_{3h}$, $D_{3}$ in 2D, and $T$, $T_{d}$, $C_{3h}$, $D_{3h}$ in 3D. This work will be helpful for explorations of the topological physics beyond the linear regime.
Electron pairing is a rare phenomenon appearing only in a few unique physical systems; e.g., superconductors and Kondo-correlated quantum dots. Here, we report on an unexpected, but robust, electron pairing in the integer quantum Hall effect (IQHE) r egime. The pairing takes place within an interfering edge channel circulating in an electronic Fabry-Perot interferometer at a wide range of bulk filling factors, $2<{ u} _B<5$. The main observations are: (a) High visibility Aharonov-Bohm conductance oscillations with magnetic flux periodicity ${Delta}{phi}={varphi}_0/2=h/2e$ (instead of the ubiquitous $h/e$), with $e$ the electron charge and $h$ the Planck constant; (b) An interfering quasiparticle charge $e ^* {sim} 2e$ - revealed by quantum shot noise measurements; and (c) Full dephasing of the $h/2e$ periodicity by induced dephasing of the adjacent edge channel (while keeping the interfering edge channel intact) : a clear realization of inter-channel entanglement. While this pairing phenomenon clearly results from inter-channel interaction, the exact mechanism that leads to e-e attraction within a single edge channel is not clear.
In recent interference experiments with an electronic Fabry-Perot interferometer (FPI), implemented in the integer quantum Hall effect regime, a flux periodicity of $h/2e$ was observed at bulk fillings $ u_B>2.5$. The halved periodicity was accompani ed by an interfering charge $e^*=2e$, determined by shot noise measurements. Here, we present measurements, demonstrating that, counterintuitively, the coherence and the interference periodicity of the interfering chiral edge channel are solely determined by the coherence and the enclosed flux of the adjacent edge channel. Our results elucidate the important role of the latter and suggest that a neutral chiral edge mode plays a crucial role in the pairing phenomenon. Our findings reveal that the observed pairing of electrons is not a curious isolated phenomenon, but one of many manifestations of unexpected edge physics in the quantum Hall effect regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا