ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical Current Density and Resistivity of MgB2 Films

104   0   0.0 ( 0 )
 نشر من قبل Alexej Pogrebnyakov
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The high resistivity of many bulk and film samples of MgB2 is most readily explained by the suggestion that only a fraction of the cross-sectional area of the samples is effectively carrying current. Hence the supercurrent (Jc) in such samples will be limited by the same area factor, arising for example from porosity or from insulating oxides present at the grain boundaries. We suggest that a correlation should exist, Jc ~ 1/{Rho(300K) - Rho(50K)}, where Rho(300K) - Rho(50K) is the change in the apparent resistivity from 300 K to 50 K. We report measurements of Rho(T) and Jc for a number of films made by hybrid physical-chemical vapor deposition which demonstrate this correlation, although the reduced effective area argument alone is not sufficient. We suggest that this argument can also apply to many polycrystalline bulk and wire samples of MgB2.

قيم البحث

اقرأ أيضاً

In this paper, we analyze the upper critical field of four MgB2 thin films, with different resistivity (between 5 to 50 mWcm) and critical temperature (between 29.5 to 38.8 K), measured up to 28 Tesla. In the perpendicular direction the critical fiel ds vary from 13 to 24 T and we can estimate 42-57 T range in other direction. We observe linear temperature dependence even at low temperatures without saturation, in contrast to BCS theory. Considering the multiband nature of the superconductivity in MgB2, we conclude that two different scattering mechanisms influence separately resistivity and critical field. In this framework, resistivity values have been calculated from Hc2(T) curves and compared with the measured ones.
A relatively high critical temperature, Tc, approaching 40 K, places the recently-discovered superconductor magnesium diboride (MgB2) intermediate between the families of low- and copper-oxide-based high-temperature superconductors (HTS). Supercurren t flow in MgB2 is unhindered by grain boundaries, unlike the HTS materials. Thus, long polycrystalline MgB2 conductors may be easier to fabricate, and so could fill a potentially important niche of applications in the 20 to 30 K temperature range. However, one disadvantage of MgB2 is that in bulk material the critical current density, Jc, appears to drop more rapidly with increasing magnetic field than it does in the HTS phases. The magnitude and field dependence of Jc are related to the presence of structural defects that can pin the quantised magnetic vortices that permeate the material, and prevent them from moving under the action of the Lorentz force. Vortex studies suggest that it is the paucity of suitable defects in MgB2 that causes the rapid decay of Jc with field. Here we show that modest levels of atomic disorder, induced by proton irradiation, enhance the pinning, and so increase Jc significantly at high fields. We anticipate that chemical doping or mechanical processing should be capable of generating similar levels of disorder, and so achieve technologically-attractive performance in MgB2 by economically-viable routes.
Ex-situ Powder-In-Tube MgB2 tapes prepared with ball-milled, undoped powders showed a strong enhancement of the irreversibility field H*, the upper critical field Hc2 and the critical current density Jc(H) together with the suppression of the anisotr opy of all of these quantities. Jc reached 104 A/cm2 at 4.2 K and 10 T, with an irreversibility field of about 14 T at 4.2 K, and Hc2 of 9 T at 25 K, high values for not-doped MgB2. The enhanced Jc and H* values are associated with significant grain refinement produced by milling of the MgB2 powder, which enhances grain boundary pinning, although at the same time also reducing the connectivity from about 12% to 8%. Although enhanced pinning and diminished connectivity are in opposition, the overall influence of ball milling on Jc is positive because the increased density of grains with a size comparable with the mean free path produces strong electron scattering that substantially increases Hc2, especially Hc2 perpendicular to the Mg and B planes.
Fe-clad MgB2 long tapes have been fabricated using a powder-in-tube technique. An Mg + 2B mixture was used as the central conductor core and reacted in-situ to form MgB2. The tapes were sintered in pure Ar at 800 ^(o) C for 1 h at ambient pressure. S EM shows a highly dense core with a large grain size of 100 micron. The Fe clad tape shows a sharp transition with transition width of 0.2 K and Tc0 at 37.5 K. We have achieved the highest transport critical current reported so far at 1.6 times 10^(4) A/cm^2 for both 29.5 K in 1 Tesla and 33 K in null field. R-T and critical current were also measured for fields perpendicular and parallel to the tape plane. The iron cladding shielded on the core from the applied external field, with the shielding being less effective for the field in the tape plane. Fe cladding may be advantageous for some applications as it could reduce the effects of both the self-field and external fields.
We study the effect of 100 MeV Silicon and 200 MeV Gold ion irradiation on the inter and intra grain properties of superconducting thin films of Magnesium Diboride. Substantial decrease in inter-grain connectivity is observed, depending on irradiatio n dose and type of ions used. We establish that modification of sigma band scattering mechanism, and consequently the upper critical field and anisotropy, depends on the size and directional properties of the extrinsic defects. Post heavy ion irradiation, the upper critical field shows enhancement at a defect density that is five orders of magnitude less compared to neutron irradiation. The critical current density however is best improved through light ion irradiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا