ترغب بنشر مسار تعليمي؟ اضغط هنا

Angular dependence of domain wall resistivity in SrRuO$_{{bf 3}}$ films

82   0   0.0 ( 0 )
 نشر من قبل Lior Klein
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

${rm SrRuO_3}$ is a 4d itinerant ferromagnet (T$_{c}$ $sim $150 K) with stripe domain structure. Using high-quality thin films of SrRuO$_{3}$ we study the resistivity induced by its very narrow ($sim 3$ nm) Bloch domain walls, $rho_{DW}$ (DWR), at temperatures between 2 K and T$_{c}$ as a function of the angle, $theta $, between the electric current and the ferromagnetic domains walls. We find that $rho_{DW}(T,theta)=sin^2theta rho_{DW}(T,90)+B(theta)rho_{DW}(T,0)$ which provides the first experimental indication that the angular dependence of spin accumulation contribution to DWR is $sin^2theta$. We expect magnetic multilayers to exhibit a similar behavior.



قيم البحث

اقرأ أيضاً

$rm SrRuO_3$ is an itinerant ferromagnet with $T_c sim 150 rm K$. When $rm SrRuO_3$ is cooled through $T_c$ in zero applied magnetic field, a stripe domain structure appears whose orientation is uniquely determined by the large uniaxial magnetocrysta lline anisotropy. We find that the ferromagnetic domain walls clearly enhance the resisitivity of $rm SrRuO_3$ and that the enhancement has different temperature dependence for currents parallel and perpendicular to the domain walls. We discuss possible interpretations of our results.
Perovskite SrRuO$_3$ is a prototypical itinerant ferromagnet which allows interface engineering of its electronic and magnetic properties. We report synthesis and investigation of atomically flat artificial multilayers of SrRuO$_3$ with the spin-orbi t semimetal SrIrO$_3$ in combination with band-structure calculations with a Hubbard $U$ term and topological analysis. They reveal an electronic reconstruction and emergence of flat Ru-4d$_{xz}$ bands near the interface, ferromagnetic interlayer coupling and negative Berry-curvature contribution to the anomalous Hall effect. We analyze the Hall effect and magnetoresistance measurements as a function of the field angle from out of plane towards in-plane orientation (either parallel or perpendicular to the current direction) by a two-channel model. The magnetic easy direction is tilted by about $20^circ$ from the sample normal for low magnetic fields, rotating towards the out-of-plane direction by increasing fields. Fully strained epitaxial growth enables a strong anisotropy of magnetoresistance. An additional Hall effect contribution, not accounted for by the two-channel model is compatible with stable skyrmions only up to a critical angle of roughly $45^circ$ from the sample normal. Within about $20^circ$ from the thin film plane an additional peak-like contribution to the Hall effect suggests the formation of a non-trivial spin structure.
We have engineered an antiferromagnetic domain wall by utilizing a magnetic frustration effect of a thin iron cap layer deposited on a chromium film. Through lithography and wet etching we selectively remove areas of the Fe cap layer to form a patter ned ferromagnetic mask over the Cr film. Removing the Fe locally removes magnetic frustration in user-defined regions of the Cr film. We present x-ray microdiffraction microscopy results confirming the formation of a 90{deg} spin-density wave propagation domain wall in Cr. This domain wall nucleates at the boundary defined by our Fe mask.
We report the dielectric dispersion of the giant magnetocapacitance (GMC) in multiferroic DyMnO$_{3}$ over a wide frequency range. The GMC is found to be attributable not to the softened electromagnon but to the electric-field-driven motion of multif erroic domain wall (DW). In contrast to conventional ferroelectric DWs, the present multiferroic DW motion holds extremely high relaxation rate of $sim$$10^{7}$ s$^{-1}$ even at low temperatures. This mobile nature as well as the model simulation suggests that the multiferroic DW is not atomically thin as in ferroelectrics but thick, reflecting its magnetic origin.
We study the magneto-optical Kerr effect (MOKE) in SrRuO$_3$ thin films, uncovering wide regimes of wavelength, temperature, and magnetic field where the Kerr rotation is not simply proportional to the magnetization but instead displays two-component behavior. One component of the MOKE signal tracks the average magnetization, while the second anomalous component bears a resemblance to anomalies in the Hall resistivity which have been previously reported in skyrmion materials. We present a theory showing that the MOKE anomalies arise from the non-monotonic relation between the Kerr angle and the magnetization, when we average over magnetic domains which proliferate near the coercive field. Our results suggest that inhomogeneous domain formation, rather than skyrmions, may provide a common origin for the observed MOKE and Hall resistivity anomalies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا