ﻻ يوجد ملخص باللغة العربية
We study the nonequilibrium dynamics of random spin chains that remain integrable (i.e., solvable via Bethe ansatz): because of correlations in the disorder, these systems escape localization and feature ballistically spreading quasiparticles. We derive a generalized hydrodynamic theory for dynamics in such random integrable systems, including diffusive corrections due to disorder, and use it to study non-equilibrium energy and spin transport. We show that diffusive corrections to the ballistic propagation of quasiparticles can arise even in noninteracting settings, in sharp contrast with clean integrable systems. This implies that operator fronts broaden diffusively in random integrable systems. By tuning parameters in the disorder distribution, one can drive this model through an unusual phase transition, between a phase where all wavefunctions are delocalized and a phase in which low-energy wavefunctions are quasi-localized (in a sense we specify). Both phases have ballistic transport; however, in the quasi-localized phase, local autocorrelation functions decay with an anomalous power law, and the density of states diverges at low energy.
We study the infinite-temperature properties of an infinite sequence of random quantum spin chains using a real-space renormalization group approach, and demonstrate that they exhibit non-ergodic behavior at strong disorder. The analysis is convenien
Quasiperiodic systems are aperiodic but deterministic, so their critical behavior differs from that of clean systems as well as disordered ones. Quasiperiodic criticality was previously understood only in the special limit where the couplings follow
In this work we probe the dynamics of the particle-hole symmetric many-body localized (MBL) phase. We provide numerical evidence that it can be characterized by an algebraic propagation of both entanglement and charge, unlike in the conventional MBL
We simulate the dynamics of a disordered interacting spin chain subject to a quasi-periodic time-dependent drive, corresponding to a stroboscopic Fibonacci sequence of two distinct Hamiltonians. Exploiting the recursive drive structure, we can effici
S=1/2 quantum spin chains and ladders with random exchange coupling are studied by using an effective low-energy field theory and transfer matrix methods. Effects of the nonlocal correlations of exchange couplings are investigated numerically. In par