ﻻ يوجد ملخص باللغة العربية
Inelastic neutron scattering was used to probe edge states in a quantum spin liquid. The experiment was performed on finite length antiferromagnetic spin-1 chains in Y_2BaNi_{1-x}Mg_xO_5. At finite fields, there is a Zeeman resonance below the Haldane gap. The wave vector dependence of its intensity provides direct evidence for staggered magnetization at chain ends, which decays exponentially towards the bulk (xi = 8(1) at T=0.1K). Continuum contributions to the chain end spectrum indicate inter-chain-segment interactions. We also observe a finite size blue shift of the Haldane gap.
This paper overviews the behavior of the end-chain spins of linear chain systems possessing a Haldane gap. The physical properties of the end-chain spins are described by reviewing the results obtained primarily with materials known as NENP, Ni(C2H8N2)2NO2(ClO4), and NINAZ, Ni(C3H10N2)2N3(ClO4).
We report inelastic time-of-flight and triple-axis neutron scattering measurements of the excitation spectrum of the coupled antiferromagnetic spin-1 Heisenberg chain system CsNiCl3. Measurements over a wide range of wave-vector transfers along the c
We consider the one-dimensional spin chain for arbitrary spin $s$ on a periodic chain with $N$ sites, the generalization of the chain that was studied by Blume and Capel cite{bc}: $$H=sum_{i=1}^N left(a (S^z_i)^2+ b S^z_iS^z_{i+1}right).$$ The Hamilt
We present a family of spin ladder models which admit exact solution for the ground state and exhibit non-Haldane spin liquid properties as predicted recently by Nersesyan and Tsvelik [Phys. Rev. Lett. v.78, 3939 (1997)], and study their excitation s
The challenge of one-dimensional systems is to understand their physics beyond the level of known elementary excitations. By high-resolution neutron spectroscopy in a quantum spin ladder material, we probe the leading multiparticle excitation by char