ﻻ يوجد ملخص باللغة العربية
The first order contribution to frictional drag in bi-layered fermion gas is examined. We discuss the relevance of single photon exchange in the evaluation of transresistance, which is usually explained by second order effects such as Coulomb and phonon drag. Since the effective e.m. interaction is unscreened, in the d.c. limit we obtain a finite (and large) contribution to transconductivity.
Coulomb interaction between two closely spaced parallel layers of electron system can generate the frictional drag effect by interlayer Coulomb scattering. Employing graphene double layers separated by few layer hexagonal boron nitride (hBN), we inve
We report frictional drag measurements between two superconducting LaAlO$_3$/SrTiO$_3$ nanowires. In these experiments, current passing through one nanowire induces a voltage across a nearby electrically isolated nanowire. The frictional drag signal
We report drag measurements on dilute double layer two-dimensional hole systems in the regime of r_s=19~39. We observed a strong enhancement of the drag over the simple Boltzmann calculations of Coulomb interaction, and deviations from the T^2 depend
We study the frictional drag in high mobility, strongly interacting GaAs bilayer hole systems in the vicinity of the filling factor $ u=1$ quantum Hall state (QHS), at the same fillings where the bilayer resistivity displays a reentrant insulating ph
Coulomb drag between parallel quantum wells provides a uniquely sensitive measurement of electron correlations since the drag response depends on interactions only. Recently it has been demonstrated that a new regime of strong interactions can be acc