ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-dependent electron transport through a ferromagnetic domain wall

78   0   0.0 ( 0 )
 نشر من قبل Tomi Ohtsuki
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theoretical study of spin-dependent transport through a ferromagnetic domain wall. With an increase of the number of components of the exchange coupling, we have observed that the variance of the conductance becomes half. As the strength of the domain wall magnetization is increased, negative magnetoresistance is also observed.

قيم البحث

اقرأ أيضاً

156 - G. Vignale , M. E. Flatte 2002
A domain wall separating two oppositely magnetized regions in a ferromagnetic semiconductor exhibits, under appropriate conditions, strongly nonlinear I-V characteristics similar to those of a p-n diode. We study these characteristics as functions of wall width and temperature. As the width increases or the temperature decreases, direct tunneling between the majority spin bands decreases the effectiveness of the diode. This has important implications for the zero-field quenched resistance of magnetic semiconductors and for the design of a recently proposed spin transistor.
Electron transport properties in a parallel double-quantum-dot structure with three-terminals are theoretically studied. By introducing a local Rashba spin-orbit coupling, we find that an incident electron from one terminal can select a specific term inal to depart from the quantum dots according to its spin state. As a result, spin polarization and spin separation can be simultaneously realized in this structure. And spin polarizations in different terminals can be inverted by tuning the structure parameters. The underlying quantum interference that gives rise to such a result is analyzed in the language of Feynman paths for the electron transmission.
We experimentally compare two types of interface structures with magnetic and non-magnetic Weyl semimetals. They are the junctions between a gold normal layer and magnetic Weyl semimetal Ti$_2$MnAl, and a ferromagnetic nickel layer and non-magnetic W eyl semimetal WTe$_2$, respectively. Due to the ferromagnetic side of the junction, we investigate spin-polarized transport through the Weyl semimetal surface. For both structures, we demonstrate similar current-voltage characteristics, with hysteresis at low currents and sharp peaks in differential resistance at high ones. Despite this behavior resembles the known current-induced magnetization dynamics in ferromagnetic structures, evolution of the resistance peaks with magnetic field is unusual. We connect the observed effects with current-induced spin dynamics in Weyl topological surface states.
We demonstrate optical manipulation of the position of a domain wall in a dilute magnetic semiconductor, GaMnAsP. Two main contributions are identified. Firstly, photocarrier spin exerts a spin transfer torque on the magnetization via the exchange in teraction. The direction of the domain wall motion can be controlled using the helicity of the laser. Secondly, the domain wall is attracted to the hot-spot generated by the focused laser. Unlike magnetic field driven domain wall depinning, these mechanisms directly drive domain wall motion, providing an optical tweezer like ability to position and locally probe domain walls.
We present a theory of the current-voltage characteristics of a magnetic domain wall between two highly spin-polarized materials, which takes into account the effect of the electrical bias on the spin-flip probability of an electron crossing the wall . We show that increasing the voltage reduces the spin-flip rate, and is therefore equivalent to reducing the width of the domain wall. As an application, we show that this effect widens the temperature window in which the operation of a unipolar spin diode is nearly ideal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا