ترغب بنشر مسار تعليمي؟ اضغط هنا

Cluster Beam Deposition and in situ Characterization of Carbyne-rich Carbon Films

71   0   0.0 ( 0 )
 نشر من قبل Alessandro Podesta'
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nanostructured carbon films produced by supersonic cluster beam deposition have been studied by in situ Raman spectroscopy. Raman spectra show the formation of a sp2 solid with a very large fraction of sp-coordinated carbyne species showing a long-term stability under ultra high vacuum. Distinct Raman contribution from polyyne and cumulene species have been observed. The long-term stability and the behavior of carbyne-rich films under different gas exposure have been characterized showing different evolution for different sp configurations. Our experiments confirm theoretical predictions and demonstrate the possibility of easily producing a stable carbyne-rich pure carbon solid. The stability of the sp2-sp network has important implications for astrophysics and for the production of novel carbon-based systems.



قيم البحث

اقرأ أيضاً

We have synthesized Fe$_{1+y}$Te thin films by means of molecular beam epitaxy (MBE) under Te-limited growth conditions. We found that epitaxial layer-by-layer growth is possible for a wide range of excess Fe values, wider than expected from what is known on the bulk material. Using x-ray magnetic circular dichroism spectroscopy at the Fe L$_{2,3}$ and Te M$_{4,5}$ edges, we observed that films with high excess Fe contain ferromagnetic clusters while films with lower excess Fe remain nonmagnetic. Moreover, x-ray absorption spectroscopy showed that it is possible to obtain films with very similar electronic structure as that of a high quality bulk single crystal Fe$_{1.14}$Te. Our results suggest that MBE with Te-limited growth may provide an opportunity to synthesize FeTe films with smaller amounts of excess Fe as to come closer to a possible superconducting phase.
We have characterized the frictional properties of nanostructured (ns) carbon films grown by Supersonic Cluster Beam Deposition (SCBD) via an Atomic Force-Friction Force Microscope (AFM-FFM). The experimental data are discussed on the basis of a modi fied Amontons law for friction, stating a linear dependence of friction on load plus an adhesive offset accounting for a finite friction force in the limit of null total applied load. Molecular Dynamics simulations of the interaction of the AFM tip with the nanostructured carbon confirm the validity of the friction model used for this system. Experimental results show that the friction coefficient is not influenced by the nanostructure of the films nor by the relative humidity. On the other hand the adhesion coefficient depends on these parameters.
78 - Y. Zhao , M. Ionescu , J. Horvat 2003
Two types of MgB2 films were prepared by pulsed laser deposition (PLD) with in situ and ex situ annealing processes respectively. Significant differences in properties between the two types of films were found. The ex situ MgB2 film has a Tc of 38.1K , while the in situ film has a depressed Tc of 34.5K. The resistivity at 40K for the in situ film is larger than that of the ex situ film by a factor of 6. The residual resistivity ratios (RRR) are 1.1 and 2.1 for the in situ and ex situ films respectively. The Jc-H curves of the in situ film show a much weaker field dependence than those of the ex situ film, attributable to stronger flux pinning in the in situ film. The small-grain feature and high oxygen level may be critical for the significant improvement of Jc in the in situ annealed MgB2 film.
We report on how different cluster deposition regimes can be obtained and observed by in situ Scanning Tunneling Microscopy (STM) by exploiting deposition parameters in a pulsed laser deposition (PLD) process. Tungsten clusters were produced by nanos econd Pulsed Laser Ablation in Ar atmosphere at different pressures and deposited on Au(111) and HOPG surfaces. Deposition regimes including cluster deposition-diffusion-aggregation (DDA), cluster melting and coalescence and cluster implantation were observed, depending on background gas pressure and target-to-substrate distance which influence the kinetic energy of the ablated species. These parameters can thus be easily employed for surface modification by cluster bombardment, deposition of supported clusters and growth of films with different morphologies. The variation in cluster mobility on different substrates and its influence on aggregation and growth mechanisms has also been investigated.
The deposition of boron-doped amorphous carbon thin films on SiO2 substrate was achieved via a focused ion beam-assisted chemical vapor deposition of triphenyl borane (C18H15B) and triphenyl borate (C18H15BO3). The existence of boron in the deposited film from triphenyl borane, with a precursor temperature of 90 {deg}C, was confirmed by a core level X-ray photoelectron spectroscopy analysis. The film exhibited a semiconducting behavior with a band gap of 285 meV. Although the band gap was decreased to 197 meV after an annealing process, the film was still semiconductor. Additionally, a drastic reduction of the resistance on the deposited film by applying pressures was observed from an in-situ electrical transport measurements using a diamond anvil cell.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا