ﻻ يوجد ملخص باللغة العربية
We have investigated the nature of the antiferromagnetic (AF) phase induced by uniaxial stress sigma in URu2Si2, by performing elastic neutron scattering measurements up to 0.4 GPa. We have found that the AF Bragg-peak intensity shows a clear hysteresis loop with sigma under the zero-stress cooling condition. The result strongly suggests that the sigma-induced AF phase is metastable and separated from the coexisting hidden ordered phase by a first-order phase transition. We also present the analyses of the crystalline strain effects, and suggest that the c/a ratio plays an important role in the competition between these two phases.
We have performed the elastic neutron scattering experiments under uniaxial stress sigma along the tetragonal [100], [110] and [001] directions for URu2Si2. For sigma // [100] and [110], the antiferromagnetic moment mu_o is strongly enhanced from 0.0
We report a single-crystal study on the magnetism of the rare-earth compound PrTiNbO$_6$ that experimentally realizes the zigzag pseudospin-$frac{1}{2}$ quantum antiferromagnetic chain model. Random crystal electric field caused by the site mixing be
The effect of pressure on the unique electronic state of the antiferromagnetic (AF) compound EuCu2Ge2 has been measured in a wide temperature range from 10 mK to 300 K by electrical resistivity measurements up to 10 GPa. The Neel temperature of TN =
High-quality thin polycrystalline films of the heavy-fermion compound CeCu_6 were prepared by sputter deposition. The thicker of these films (with thickness up to around 200 nm) reproduce the properties of the bulk compound CeCu_6. As the thickness o
We report results from neutron scattering experiments on single crystals of YbBiPt that demonstrate antiferromagnetic order characterized by a propagation vector, $tau_{rm{AFM}}$ = ($frac{1}{2} frac{1}{2} frac{1}{2}$), and ordered moments that align