ﻻ يوجد ملخص باللغة العربية
High-quality thin polycrystalline films of the heavy-fermion compound CeCu_6 were prepared by sputter deposition. The thicker of these films (with thickness up to around 200 nm) reproduce the properties of the bulk compound CeCu_6. As the thickness of the films is decreased, our measurements display strong deviations from the bulk properties, namely, a suppression of the heavy-fermion state. We show that possible `external effects, like disorder, oxidation and morphology can be excluded and that this size effect is therefore an intrinsic property of CeCu_6. In addition, we investigate possible scenarios explaining the size effect, and find that the proximity of CeCu_6 to a quantum phase transition can account for this striking result.
We report results from neutron scattering experiments on single crystals of YbBiPt that demonstrate antiferromagnetic order characterized by a propagation vector, $tau_{rm{AFM}}$ = ($frac{1}{2} frac{1}{2} frac{1}{2}$), and ordered moments that align
We performed the Shubnikov-de Haas (SdH) experiments of the low carrier heavy fermion compound URu2Si2 at high fields up to 34T and at low temperatures down to 30mK. All main SdH branches named alpha, beta and gamma were observed for all the measured
A Kondo lattice of strongly interacting f-electrons immersed in a sea of conduction electrons remains one of the unsolved problems in condensed matter physics. The problem concerns localized f-electrons at high temperatures which evolve into hybridiz
We report on the thin film resistivity of several platinum-group metals (Ru, Pd, Ir, Pt). Platinum-group thin films show comparable or lower resistivities than Cu for film thicknesses below about 5,nm due to a weaker thickness dependence of the resis
The order parameter and pairing mechanism for superconductivity in heavy fermion compounds are still poorly understood. Scanning tunneling microscopy and spectroscopy at ultra-low temperatures can yield important information about the superconducting