ترغب بنشر مسار تعليمي؟ اضغط هنا

Growth of superconducting MgB2 thin films via postannealing techniques

78   0   0.0 ( 0 )
 نشر من قبل Won Nam Kang
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the effect of annealing on the superconductivity of MgB2 thin films as functions of the postannealing temperature in the range from 700 C to 950 C and of the postannealing time in the range from 30 min to 120 min. On annealing at 900 C for 30 min, we obtained the best-quality MgB2 films with a transition temperature of 39 K and a critical current density of ~ 10^7 A/cm^2. Using the scanning electron microscopy, we also investigated the film growth mechanism. The samples annealed at higher temperatures showed the larger grain sizes, well-aligned crystal structures with preferential orientations along the c-axis, and smooth surface morphologies. However, a longer annealing time prevented the alignment of grains and reduced the superconductivity, indicating a strong interfacial reaction between the substrate and the MgB2 film.



قيم البحث

اقرأ أيضاً

The growth mechanisms of MgB2 films obtained by different methods on various substrates are compared via a detailed cross-sectional scanning electron microscopy (SEM) study. The analyzed films include (a) samples obtained by an ex-situ post-anneal at 900 degree of e-beam evaporated boron in the presence of an Mg vapor (exhibiting bulk-like Tc0 about 38.8 K), (b) samples obtained by the same ex-situ 900 degree anneal of pulsed laser deposition (PLD)-grown Mg+B precursors (exhibiting Tc0 ~ 25 K), and (c) films obtained by a low-temperature (600 - 630 degree) in-situ anneal of PLD-grown Mg+B precursors (with Tc0 about 24 K). A significant oxygen contamination was also present in films obtained from a PLD-grown precursors. On the other hand, it is clearly observed that the films obtained by the high-temperature reaction of e-beam evaporated B with Mg vapor are formed by the nucleation of independent MgB2 grains at the film surface, indicating that this approach may not be suitable to obtain smooth and (possibly) epitaxial films.
We have studied structural and superconducting properties of MgB2 thin films doped with carbon during the hybrid physical-chemical vapor deposition process. A carbon-containing metalorganic precursor bis(cyclopentadienyl)magnesium was added to the ca rrier gas to achieve carbon doping. As the amount of carbon in the films increases, the resistivity increases, Tc decreases, and the upper critical field increases dramatically as compared to the clean films. The self-field Jc in the carbon-doped films is lower than that in the clean films, but Jc remains relatively high to much higher magnetic fields, indicating stronger pinning. Structurally, the doped films are textured with nano-grains and highly resistive amorphous areas at the grain boundaries. The carbon doping approach can be used to produce MgB2 materials for high magnetic field applications.
We discuss pinning properties of MgB2 thin films grown by pulsed-laser deposition (PLD) and by electron-beam (EB) evaporation. Two mechanisms are identified that contribute most effectively to the pinning of vortices in randomly oriented films. The E B process produces low defected crystallites with small grain size providing enhanced pinning at grain boundaries without degradation of Tc. The PLD process produces films with structural disorder on a scale less that the coherence length that further improves pinning, but also depresses Tc.
148 - S. D. Bu 2002
We report the growth and properties of epitaxial MgB2 thin films on (0001) Al2O3 substrates. The MgB2 thin films were prepared by depositing boron films via RF magnetron sputtering, followed by a post-deposition anneal at 850C in magnesium vapor. X-r ay diffraction and cross-sectional TEM reveal that the epitaxial MgB2 films are oriented with their c-axis normal to the (0001) Al2O3 substrate and a 30 degree rotation in the ab-plane with respect to the substrate. The critical temperature was found to be 35 K and the anisotropy ratio, Hc2(parallel to the film) / Hc2(pendicular to the film), about 3 at 25K. The critical current densities at 4.2 K and 20 K (at 1 T perpendicular magnetic field) are 5x10E6 A/cm2 and 1x10E6 A/cm2, respectively. The controlled growth of epitaxial MgB2 thin films opens a new avenue in both understanding superconductivity in MgB2 and technological applications.
72 - S.Lee , H.Mori , T.Masui 2001
Here we report the growth of sub-millimeter MgB2 single crystals of various shapes under high pressure in Mg-B-N system. Structure refinement using a single-crystal X-ray diffraction analysis gives lattice parameters a=3.0851(5) A and c=3.5201(5) A w ith small reliability factors (Rw =0.025, R=0.018), which enables us to analyze the Fourier and Fourier difference maps. The maps clearly show the B sp2 orbitals and covalency of the B-B bonds. The sharp superconducting transitions at Tc =38.1-38.3K were obtained in both magnetization (DTc =0.6K) and resistivity (DTc <0.3K) measurements. Resistivity measurements with magnetic fields applied parallel and perpendicular to the Mg and B sheets reveal the anisotropic nature of this compound, with upper critical field anisotropy ratio of about 2.7.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا