ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-current modulation and square-wave transmission through periodically stubbed electron waveguides

245   0   0.0 ( 0 )
 نشر من قبل Xue Feng Wang
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف X. F. Wang -




اسأل ChatGPT حول البحث

Ballistic spin transport through waveguides, with symmetric or asymmetric double stubs attached to them periodically, is studied systematically in the presence of a weak spin-orbit coupling that makes the electrons precess. By an appropriate choice of the waveguide length and of the stub parameters injected spin-polarized electrons can be blocked completely and the transmission shows a periodic and nearly square-type behavior, with values 1 and 0, with wide gaps when only one mode is allowed to propagate in the waveguide. A similar behavior is possible for a certain range of the stub parameters even when two-modes can propagate in the waveguide and the conductance is doubled. Such a structure is a good candidate for establishing a realistic spin transistor. A further modulation of the spin current can be achieved by inserting defects in a finite-number stub superlattice. Finite-temperature effects on the spin conductance are also considered.



قيم البحث

اقرأ أيضاً

98 - X. F. Wang , 2001
A theoretical investigation is made of acoustic wave propagation in a periodically stubbed waveguide. In general the waveguide segments and stubs are made of different materials. The acoustic wave in such a system has two independent polarizations: o ut-of-plane and in-plane modes. The band structure and transmission spectrum is studied for diverse geometries using a simple and efficient version of the transfer-matrix method. For the same material between the waveguide and symmetric stubs the width of some gaps can change, upon varying the stub length or width, by more than one order of magnitude. A further modulation can be achieved for different material between the stubs and the main waveguide or if the stubs are asymmetric. The gaps in the band structure of an infinitely long system correspond to those in the transmission spectrum of the same system but with finite number n of units. For n finite i) there exist pseudogaps that gradually turn into complete gaps with increasing n, and ii) the introduction of defects gives rise to states in the gaps and leads to transmission resonances.
Ballistic spin transport is studied through electronic tuners with double stubs attached to them. The spins precess due to the spin-orbit interaction. Injected polarized spins can exit the structure polarized in the opposite direction. A nearly squar e-wave spin transmission, with values 1 and 0, can be obtained using a periodic system of symmetric stubs and changing their length or width. The gaps in the transmission can be widened using asymmetric stubs. An additional modulation is obtained upon combining stub structures with different values of the spin-orbit strength.
60 - P. Debray 2000
We present results of experimental and theoretical investigations of electron transport through stub-shaped waveguides or electron stub tuners (ESTs) in the ballistic regime. Measurements of the conductance G as a function of voltages, applied to dif ferent gates V_i (i=bottom, top, and side) of the device, show oscillations in the region of the first quantized plateau which we attribute to reflection resonances. The oscillations are rather regular and almost periodic when the height h of the EST cavity is small compared to its width. When h is increased, the oscillations become less regular and broad depressions in G appear. A theoretical analysis, which accounts for the electrostatic potential formed by the gates in the cavity region, and a numerical computation of the transmission probabilities successfully explains the experimental observations. An important finding for real devices, defined by surface Schottky gates, is that the resonance nima result from size quantization along the transport direction of the EST.
334 - Gal Shavit , Yuval Oreg 2020
Recent transport experiments in spatially modulated quasi-1D structures created on top of LaAlO$_3$/SrTiO$_3$ interfaces have revealed some interesting features, including phenomena conspicuously absent without the modulation. In this work, we focus on two of these remarkable features and provide theoretical analysis allowing their interpretation. The first one is the appearance of two-terminal conductance plateaus at rational fractions of $e^2/h$. We explain how this phenomenon, previously believed to be possible only in systems with strong repulsive interactions, can be stabilized in a system with attraction in the presence of the modulation. Using our theoretical framework we find the plateau amplitude and shape, and characterize the correlated phase which develops in the system due to the partial gap, namely a Luttinger liquid of electronic trions. The second observation is a sharp conductance dip below a conductance of $1times e^2/h$, which changes its value over a wide range when tuning the system. We theorize that it is due to resonant backscattering caused by a periodic spin-orbit field. The behavior of this dip can be reliably accounted for by considering the finite length of the electronic waveguides, as well as the interactions therein. The phenomena discussed in this work exemplify the intricate interplay of strong interactions and spatial modulations, and reveal the potential for novel strongly correlated phases of matter in systems which prominently feature both.
286 - Q. Wang , B. Heinz , R. Verba 2018
Spin waves are investigated in Yttrium Iron Garnet (YIG) waveguides with a thickness of 39 nm and widths ranging down to 50 nm, i.e., with aspect ratios thickness over width approaching unity, using Brillouin Light Scattering spectroscopy. The experi mental results are verified by a semi-analytical theory and micromagnetic simulations. A critical width is found, below which the exchange interaction suppresses the dipolar pinning phenomenon. This changes the quantization criterion for the spin-wave eigenmodes and results in a pronounced modification of the spin-wave characteristics. The presented semi-analytical theory allows for the calculation of spin-wave mode profiles and dispersion relations in nano-structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا