ﻻ يوجد ملخص باللغة العربية
Ballistic spin transport is studied through electronic tuners with double stubs attached to them. The spins precess due to the spin-orbit interaction. Injected polarized spins can exit the structure polarized in the opposite direction. A nearly square-wave spin transmission, with values 1 and 0, can be obtained using a periodic system of symmetric stubs and changing their length or width. The gaps in the transmission can be widened using asymmetric stubs. An additional modulation is obtained upon combining stub structures with different values of the spin-orbit strength.
Ballistic spin transport through waveguides, with symmetric or asymmetric double stubs attached to them periodically, is studied systematically in the presence of a weak spin-orbit coupling that makes the electrons precess. By an appropriate choice o
The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states has led to the observation of new electronic transport phenomena such as anomalously quantized Hall effec
Electron transport in a new low-dimensional structure - the nuclear spin polarization induced quantum wire (NSPI QW) is theoretically studied. In the proposed system the local nuclear spin polarization creates the effective hyperfine field which conf
Artificial square spin ices are structures composed of magnetic elements arranged on a geometrically frustrated lattice and located on the sites of a two-dimensional square lattice, such that there are four interacting magnetic elements at each verte
Carbon nanotubes (CNT) belong to the most promising new materials which can in the near future revolutionize the conventional electronics. When sandwiched between ferromagnetic electrodes, the CNT behaves like a spacer in conventional spin-valves, le