ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of longitudinal structures in granular flows

239   0   0.0 ( 0 )
 نشر من قبل Aronson Igor
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the framework of the theory of partially fluidized granular flows we study the formation of longitudinal structures observed experimentally by Forterre and Pouliquen in a flow down a rough inclined plane. We show that the formation of longitudinal structures is related to the positive feedback between the fluidization rate and the lateral stress (side pressure), which leads to a convective instability. Our theory explains main experimental features, such as appearance and amplification of the structure at some distance from the outlet and non-stationary behavior of the structures.


قيم البحث

اقرأ أيضاً

111 - V.I. Yukalov , A.N. Novikov , 2014
We present experimental observations and numerical simulations of nonequilibrium spatial structures in a trapped Bose-Einstein condensate subject to oscillatory perturbations. In experiment, first, there appear collective excitations, followed by qua ntum vortices. Increasing the amount of the injected energy leads to the formation of vortex tangles representing quantum turbulence. We study what happens after the regime of quantum turbulence, with increasing further the amount of injected energy. In such a strongly nonequilibrium Bose-condensed system of trapped atoms, vortices become destroyed and there develops a new kind of spatial structure exhibiting essentially heterogeneous spatial density. The structure reminds fog consisting of high-density droplets, or grains, surrounded by the regions of low density. The grains are randomly distributed in space, where they move. They live sufficiently long time to be treated as a type of metastable objects. Such structures have been observed in nonequilibrium trapped Bose gases of $^{87}$Rb, subject to the action of alternating fields. Here we present experimental results and support them by numerical simulations. The granular, or fog structure is essentially different from the state of wave turbulence that develops after increasing further the amount of injected energy.
Granular materials react to shear stresses differently than do ordinary fluids. Rather than deforming uniformly, materials such as dry sand or cohesionless powders develop shear bands: narrow zones containing large relative particle motion leaving ad jacent regions essentially rigid[1,2,3,4,5]. Since shear bands mark areas of flow, material failure and energy dissipation, they play a crucial role for many industrial, civil engineering and geophysical processes[6]. They also appear in related contexts, such as in lubricating fluids confined to ultra-thin molecular layers[7]. Detailed information on motion within a shear band in a three-dimensional geometry, including the degree of particle rotation and inter-particle slip, is lacking. Similarly, only little is known about how properties of the individual grains - their microstructure - affect movement in densely packed material[5]. Combining magnetic resonance imaging, x-ray tomography, and high-speed video particle tracking, we obtain the local steady-state particle velocity, rotation and packing density for shear flow in a three-dimensional Couette geometry. We find that key characteristics of the granular microstructure determine the shape of the velocity profile.
The earlier-developed master equation approach and kinetic cluster methods are applied to study kinetics of L1_0 type orderings in alloys, including the formation of twinned structures characteristic of cubic-tetragonal-type phase transitions. A micr oscopical model of interatomic deformational interactions is suggested which generalizes a similar model of Khachaturyan for dilute alloys to the physically interesting case of concentrated alloys. The model is used to simulate A1->L1_0 transformations after a quench of an alloy from the disordered A1 phase to the single-phase L1_0 state for a number of alloy models with different chemical interactions, temperatures, concentrations, and tetragonal distortions. We find a number of peculiar features in both transient microstructures and transformation kinetics, many of them agreeng well with experimental data. The simulations also demonstrate a phenomenon of an interaction-dependent alignment of antiphase boundaries in nearly-equilibrium twinned bands which seems to be observed in some experiments.
Avalanche experiments on an erodible substrate are treated in the framework of ``partial fluidization model of dense granular flows. The model identifies a family of propagating soliton-like avalanches with shape and velocity controlled by the inclin ation angle and the depth of substrate. At high inclination angles the solitons display a transverse instability, followed by coarsening and fingering similar to recent experimental observation. A primary cause for the transverse instability is directly related to the dependence of soliton velocity on the granular mass trapped in the avalanche.
For vertical velocity field $v_{rm z} (r,z;R)$ of granular flow through an aperture of radius $R$, we propose a size scaling form $v_{rm z}(r,z;R)=v_{rm z} (0,0;R)f (r/R_{rm r}, z/R_{rm z})$ in the region above the aperture. The length scales $R_{rm r}=R- 0.5 d$ and $R_{rm z}=R+k_2 d$, where $k_2$ is a parameter to be determined and $d$ is the diameter of granule. The effective acceleration, which is derived from $v_{rm z}$, follows also a size scaling form $a_{rm eff} = v_{rm z}^2(0,0;R)R_{rm z}^{-1} theta (r/R_{rm r}, z/R_{rm z})$. For granular flow under gravity $g$, there is a boundary condition $a_{rm eff} (0,0;R)=-g$ which gives rise to $v_{rm z} (0,0;R)= sqrt{ lambda g R_{rm z}}$ with $lambda=-1/theta (0,0)$. Using the size scaling form of vertical velocity field and its boundary condition, we can obtain the flow rate $W =C_2 rho sqrt{g } R_{rm r}^{D-1} R_{rm z}^{1/2} $, which agrees with the Beverloo law when $R gg d$. The vertical velocity fields $v_z (r,z;R)$ in three-dimensional (3D) and two-dimensional (2D) hoppers have been simulated using the discrete element method (DEM) and GPU program. Simulation data confirm the size scaling form of $v_{rm z} (r,z;R)$ and the $R$-dependence of $v_{rm z} (0,0;R)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا