ﻻ يوجد ملخص باللغة العربية
For vertical velocity field $v_{rm z} (r,z;R)$ of granular flow through an aperture of radius $R$, we propose a size scaling form $v_{rm z}(r,z;R)=v_{rm z} (0,0;R)f (r/R_{rm r}, z/R_{rm z})$ in the region above the aperture. The length scales $R_{rm r}=R- 0.5 d$ and $R_{rm z}=R+k_2 d$, where $k_2$ is a parameter to be determined and $d$ is the diameter of granule. The effective acceleration, which is derived from $v_{rm z}$, follows also a size scaling form $a_{rm eff} = v_{rm z}^2(0,0;R)R_{rm z}^{-1} theta (r/R_{rm r}, z/R_{rm z})$. For granular flow under gravity $g$, there is a boundary condition $a_{rm eff} (0,0;R)=-g$ which gives rise to $v_{rm z} (0,0;R)= sqrt{ lambda g R_{rm z}}$ with $lambda=-1/theta (0,0)$. Using the size scaling form of vertical velocity field and its boundary condition, we can obtain the flow rate $W =C_2 rho sqrt{g } R_{rm r}^{D-1} R_{rm z}^{1/2} $, which agrees with the Beverloo law when $R gg d$. The vertical velocity fields $v_z (r,z;R)$ in three-dimensional (3D) and two-dimensional (2D) hoppers have been simulated using the discrete element method (DEM) and GPU program. Simulation data confirm the size scaling form of $v_{rm z} (r,z;R)$ and the $R$-dependence of $v_{rm z} (0,0;R)$.
Cohesive granular media flowing down an inclined plane are studied by discrete element simulations. Previous work on cohesionless granular media demonstrated that within the steady flow regime where gravitational energy is balanced by dissipation ari
Granular materials react to shear stresses differently than do ordinary fluids. Rather than deforming uniformly, materials such as dry sand or cohesionless powders develop shear bands: narrow zones containing large relative particle motion leaving ad
Using high-speed video and magnetic resonance imaging (MRI) we study the motion of a large sphere in a vertically vibrated bed of smaller grains. As previously reported we find a non-monotonic density dependence of the rise and sink time of the large
We report an experimental study of a binary sand bed under an oscillating water flow. The formation and evolution of ripples is observed. The appearance of a granular segregation is shown to strongly depend on the sand bed preparation. The initial wa
Avalanche experiments on an erodible substrate are treated in the framework of ``partial fluidization model of dense granular flows. The model identifies a family of propagating soliton-like avalanches with shape and velocity controlled by the inclin