ترغب بنشر مسار تعليمي؟ اضغط هنا

The influence of microstructures and crystalline defects on the superconductivity of MgB2

122   0   0.0 ( 0 )
 نشر من قبل Adriana C. Serquis
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work studies the influence of microstructures and crystalline defects on the superconductivity of MgB2, with the objective to improve its flux pinning. A MgB2 sample pellet that was hot isostatic pressed (HIPed) was found to have significantly increased critical current density (Jc) at high fields than its un-HIPed counterpart. The HIPed sample had a Jc of 10000 A/cm2 in 50000 Oe (5 T) at 5K. This was 20 times higher than that of the un-HIPed sample, and the same as the best Jc reported by other research groups. Microstructures observed in scanning and transmission electron microscopy indicate that the HIP process eliminated porosity present in the MgB2 pellet resulting in an improved intergrain connectivity. Such improvement in intergrain connectivity was believed to prevent the steep Jc drop with magnetic field H that occurred in the un-HIPed MgB2 pellet at H > 45000 Oe (4.5 T) and T = 5 K. The HIP process was also found to disperse the MgO that existed at the grain boundaries of the un-HIPed MgB2 pellet and to generate more dislocations in the HIPed the pellets. These dispersed MgO particles and dislocations improved flux pinning also at H<45000 Oe. The HIPing process was also found to lower the resistivity at room temperature.

قيم البحث

اقرأ أيضاً

The influence of lattice strain and Mg vacancies on the superconducting properties of MgB2 samples has been investigated. High quality samples with sharp superconducting transitions were synthesized. The variation in lattice strain and Mg vacancy con centrations were obtained by varying the synthesis conditions. It was found that high strain (~1%) and the presence of Mg vacancies (~ 5 %) resulted in lowering the Tc by only 2 K.
Bulk MgB2 samples were prepared under different synthesis conditions and analyzed by scanning and transmission electron microscopy. The critical current densities were determined from the magnetization versus magnetic field curves of bulk and powder- dispersed-in-epoxy samples. Results show that through a slow cooling process, the oxygen dissolved in bulk MgB2 at high synthesis temperatures can segregate and form nanometer-sized coherent precipitates of Mg(B,O)2 in the MgB2 matrix. Magnetization measurements indicate that these precipitates act as effective flux pinning centers and therefore significantly improve the intra-grain critical current density and its field dependence.
Aluminum nitride (AlN) plays a key role in modern power electronics and deep-ultraviolet photonics, where an understanding of its thermal properties is essential. Here we measure the thermal conductivity of crystalline AlN by the 3${omega}$ method, f inding it ranges from 674 ${pm}$ 56 W/m/K at 100 K to 186 ${pm}$ 7 W/m/K at 400 K, with a value of 237 ${pm}$ 6 W/m/K at room temperature. We compare these data with analytical models and first principles calculations, taking into account atomic-scale defects (O, Si, C impurities, and Al vacancies). We find Al vacancies play the greatest role in reducing thermal conductivity because of the largest mass-difference scattering. Modeling also reveals that 10% of heat conduction is contributed by phonons with long mean free paths, over ~7 ${mu}$m at room temperature, and 50% by phonons with MFPs over ~0.3 ${mu}$m. Consequently, the effective thermal conductivity of AlN is strongly reduced in sub-micron thin films or devices due to phonon-boundary scattering.
We show the evolution of Raman spectra with number of graphene layers on different substrates, SiO$_{2}$/Si and conducting indium tin oxide (ITO) plate. The G mode peak position and the intensity ratio of G and 2D bands depend on the preparation of s ample for the same number of graphene layers. The 2D Raman band has characteristic line shapes in single and bilayer graphene, capturing the differences in their electronic structure. The defects have a significant influence on the G band peak position for the single layer graphene: the frequency shows a blue shift upto 12 cm$^{-1}$ depending on the intensity of the D Raman band, which is a marker of the defect density. Most surprisingly, Raman spectra of graphene on the conducting ITO plates show a lowering of the G mode frequency by $sim$ 6 cm$^{-1}$ and the 2D band frequency by $sim$ 20 cm$^{-1}$. This red-shift of the G and 2D bands is observed for the first time in single layer graphene.
299 - W. A. Adeagbo , P. Entel 2005
The Born effective charges of component atoms and phonon spectra of a tetrahedrally coordinated crystalline ice are calculated from the first principles method based on density functional theory within the generalized gradient approximation with the projected augmented wave method. Phonon dispersion relations in a 3x1x1 supercell were evaluated from Hellmann-Feynman forces with the direct method. This calculation is an additional work to the direct method in calculating the phonon spectra which does not take into account the polarization charges arising from dipole interaction of molecules of water in ice. The calculated Born effective polarization charges from linear response theory are supplied as the correction terms to the dynamical matrix in order to further investigate the LO-TO splitting of the polar modes of ice crystal at k=0 which has long been speculated for this system especially in the region between 28 and 37 meV both in the theoretical and experimental studies. Our results clearly show the evidence of splitting of longitudinal and transverse optic modes at the k=0-point in agreement with some experimental findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا