ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface Scaling Analysis of a Frustrated Spring-network Model for Surfactant-templated Hydrogels

68   0   0.0 ( 0 )
 نشر من قبل Per Arne Rikvold
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and study a simplified model for the surface and bulk structures of crosslinked polymer gels, into which voids are introduced through templating by surfactant micelles. Such systems were recently studied by Atomic Force Microscopy [M. Chakrapani et al., e-print cond-mat/0112255]. The gel is represented by a frustrated, triangular network of nodes connected by springs of random equilibrium lengths. The nodes represent crosslinkers, and the springs correspond to polymer chains. The boundaries are fixed at the bottom, free at the top, and periodic in the lateral direction. Voids are introduced by deleting a proportion of the nodes and their associated springs. The model is numerically relaxed to a representative local energy minimum, resulting in an inhomogeneous, ``clumpy bulk structure. The free top surface is defined at evenly spaced points in the lateral (x) direction by the height of the topmost spring, measured from the bottom layer, h(x). Its scaling properties are studied by calculating the root-mean-square surface width and the generalized increment correlation functions C_q(x)= <|h(x_0+x)-h(x_0)|^q>. The surface is found to have a nontrivial scaling behavior on small length scales, with a crossover to scale-independent behavior on large scales. As the vacancy concentration approaches the site-percolation limit, both the crossover length and the saturation value of the surface width diverge in a manner that appears to be proportional to the bulk connectivity length. This suggests that a percolation transition in the bulk also drives a similar divergence observed in surfactant templated polyacrylamide gels at high surfactant concentrations.



قيم البحث

اقرأ أيضاً

We show that smoothing of multiaffine surfaces that are generated by simulating a crosslinked polymer gel by a frustrated, triangular network of springs of random equilibrium lengths [G.M. Buend{i}a, S.J. Mitchell, P.A. Rikvold, Phys. Rev. E 66 (2002 ) 046119] changes the scaling behavior of the surfaces such that they become self-affine. The self-affine behavior is consistent with recent atomic force microscopy (AFM) studies of the surface structure of crosslinked polymer gels into which voids are introduced through templating by surfactant micelles [M. Chakrapani, S.J. Mitchell, D.H. Van Winkle, P.A. Rikvold, J. Colloid Interface Sci., in press]. The smoothing process mimics the effect of the AFM tip that tends to flatten the soft gel surfaces. Both the experimental and the simulated surfaces have a non-trivial scaling behavior on small length scales, with a crossover to scale-independent behavior on large scales.
97 - K. Kovacs , Y. Brechet , Z. Neda 2004
A simple mechanical spring-block model is introduced for studying magnetization phenomena and in particularly the Barkhausen noise. The model captures and reproduces the accepted microscopic picture of domain wall movement and pinning. Computer simul ations suggest that this model is able to reproduce the main characteristics of hysteresis loops and Barkhausen jumps. In the thermodynamic limit the statistics of the obtained Barkhausen jumps follows several scaling laws, in qualitative agreement with the experimental results. The simplicity of the model and the invoked mechanical analogies makes it attractive for computer simulations and pedagogical purposes.
We extend the Cahn-Landau-de Gennes mean field theory of binary mixtures to understand the wetting thermodynamics of a three phase system, that is in contact with an external surface which prefers one of the phases. We model the system using a phenom enological free energy having three minima corresponding to low, intermediate and high density phases. By systematically varying the textit{(i)} depth of the central minimum, textit{(ii)} the surface interaction parameters, we explore the phase behavior, and wetting characteristics of the system across the triple point corresponding to three phase coexistence. We observe a non-monotonic dependence of the surface tension across the triple point that is associated with a complete to partial wetting transition. The methodology is then applied to study the wetting behaviour of a polymer-liquid crystal mixture in contact with a surface using a renormalised free energy. Our work provides a way to interrogate phase behavior and wetting transitions of biopolymers in cellular environments.
The discrete element method constitutes a general class of modeling techniques to simulate the microscopic behavior (i.e. at the particle scale) of granular/soil materials. We present a contact dynamics method, accounting for the cohesive nature of f ine powders and soils. A modification of the model adjusted to capture the essential physical processes underlying the dynamics of generation and collapse of loose systems is able to simulate quicksand behavior of a collapsing soil material, in particular of a specific type, which we call living quicksand. We investigate the penetration behavior of an object for varying density of the material. We also investigate the dynamics of the penetration process, by measuring the relation between the driving force and the resulting velocity of the intruder, leading to a power law behavior with exponent 1/2, i.e. a quadratic velocity dependence of the drag force on the intruder.
A comparative simulation study of polymer brushes formed by grafting at a planar surface either flexible linear polymers (chain length $N_L$) or (non-catenated) ring polymers (chain length $N_R=2 N_L$) is presented. Two distinct off-lattice models ar e studied, one by Monte Carlo methods, the other by Molecular Dynamics, using a fast implementation on graphics processing units (GPUs). It is shown that the monomer density profiles $rho(z)$ in the $z$-direction perpendicular to the surface for rings and linear chains are practically identical, $rho_R(2 N_L, z)=rho_L(N_L, z)$. The same applies to the pressure, exerted on a piston at hight z, as well. While the gyration radii components of rings and chains in $z$-direction coincide, too, and increase linearly with $N_L$, the transverse components differ, even with respect to their scaling properties: $R_{gxy}^{(L)} propto N_L^{1/2}$, $R_{gxy}^{(R)} propto N_L^{0.4}$. These properties are interpreted in terms of the statistical properties known for ring polymers in dense melts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا