ﻻ يوجد ملخص باللغة العربية
The discrete element method constitutes a general class of modeling techniques to simulate the microscopic behavior (i.e. at the particle scale) of granular/soil materials. We present a contact dynamics method, accounting for the cohesive nature of fine powders and soils. A modification of the model adjusted to capture the essential physical processes underlying the dynamics of generation and collapse of loose systems is able to simulate quicksand behavior of a collapsing soil material, in particular of a specific type, which we call living quicksand. We investigate the penetration behavior of an object for varying density of the material. We also investigate the dynamics of the penetration process, by measuring the relation between the driving force and the resulting velocity of the intruder, leading to a power law behavior with exponent 1/2, i.e. a quadratic velocity dependence of the drag force on the intruder.
The phase behavior of charged rods in the presence of inter-rod linkers is studied theoretically as a model for the equilibrium behavior underlying the organization of actin filaments by linker proteins in the cytoskeleton. The presence of linkers in
We propose and study a simplified model for the surface and bulk structures of crosslinked polymer gels, into which voids are introduced through templating by surfactant micelles. Such systems were recently studied by Atomic Force Microscopy [M. Chak
A 2D contact dynamics model is proposed as a microscopic description of a collapsing suspension/soil to capture the essential physical processes underlying the dynamics of generation and collapse of the system. Our physical model is compared with rea
We extend the Cahn-Landau-de Gennes mean field theory of binary mixtures to understand the wetting thermodynamics of a three phase system, that is in contact with an external surface which prefers one of the phases. We model the system using a phenom
The glass transition remains unclarified in condensed matter physics. Investigating the mechanical properties of glass is challenging because any global deformation that may result in shear rejuvenation requires an astronomical relaxation time. Moreo